
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016 109

Video Super-Resolution With Convolutional
Neural Networks

Armin Kappeler, Seunghwan Yoo, Qiqin Dai, and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract—Convolutional neural networks (CNN) are a special
type of deep neural networks (DNN). They have so far been suc-
cessfully applied to image super-resolution (SR) as well as other
image restoration tasks. In this paper, we consider the problem
of video super-resolution. We propose a CNN that is trained on
both the spatial and the temporal dimensions of videos to enhance
their spatial resolution. Consecutive frames are motion compen-
sated and used as input to a CNN that provides super-resolved
video frames as output. We investigate different options of com-
bining the video frames within one CNN architecture. While large
image databases are available to train deep neural networks, it
is more challenging to create a large video database of sufficient
quality to train neural nets for video restoration. We show that
by using images to pretrain our model, a relatively small video
database is sufficient for the training of our model to achieve
and even improve upon the current state-of-the-art. We compare
our proposed approach to current video as well as image SR
algorithms.

Index Terms—Deep Learning, Deep Neural Networks,
Convolutional Neural Networks, Video Super-Resolution.

I. INTRODUCTION

I MAGE and video or multiframe super-resolution is the
process of estimating a high resolution version of a low res-

olution image or video sequence. It has been studied for a long
time, but has become more prevalent with the new generation
of Ultra High Definition (UHD) TVs (3,840 × 2,048). Most
video content is not available in UHD resolution. Therefore SR
algorithms are needed to generate UHD content from Full HD
(FHD) (1,920 × 1080) or lower resolutions.

SR algorithms can be divided into two categories, model-
based and learning-based algorithms. Model-based approaches
[1]–[5] model the Low Resolution (LR) image as a blurred,
subsampled version of the High Resolution (HR) image with
additive noise. The reconstruction of the HR image from the
LR image is an ill-posed problem and therefore needs to be
regularized. In a Bayesian framework, priors controlling the
smoothness or the total variation of the image are introduced
in order to obtain the reconstructed HR image. For exam-
ple, Babacan et al. [1] utilize the Bayesian framework to
reconstruct an HR image from multiple LR observations, sub-
ject to rotation and translation amongst them. Belekos et al.

Manuscript received August 13, 2015; revised February 03, 2016; accepted
February 10, 2016. Date of publication March 30, 2016; date of current version
May 03, 2016. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Alessandro Foi.

The authors are with the Department of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL 60208 USA (e-mail:
a.kappeler@u.northwestern.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCI.2016.2532323

[2] and later Liu and Sun [3] also use the Bayesian frame-
work to derive an algorithm that is able to deal with complex
motion and real world video sequences. With all these algo-
rithms, the motion field and the HR reconstructed image,
along with additionally required model parameters are esti-
mated simultaneously from the observed data. Ma et al. [5]
presented an algorithm that extended the same idea to handle
motion blur.

Learning-based algorithms learn representations from large
training databases of HR and LR image pairs [6]–[11] or
exploit self-similarities within an image [10]–[13]. Dictionary
based approaches utilize the assumption that natural image
patches can be sparsely represented as a linear combination of
learned dictionary patches or atoms. Yang et al. [6] were among
the first to use two coupled dictionaries to learn a nonlinear
mapping between the LR and the HR images. Improvements
and variations of [6] were represented in [7]–[10], [13]. Song
et al. [14] propose a dictionary approach to video super-
resolution where the dictionary is learned on the fly. However,
the authors assumed that sparsely existing keyframes in HR
are available. Learning-based methods generally learn repre-
sentations of patches and therefore also reconstruct an image
patch by patch. In order to avoid artifacts along the patch edges,
overlapping patches are used which leads to a considerable
computational overhead.

Inspired by the recent successes achieved with CNNs [15],
[16], a new generation of image SR algorithms based on deep
neural nets emerged [17]–[21], with very promising perfor-
mances. The training of CNNs can be done efficiently by paral-
lelization using GPU-accelerated computing. Neural networks
are capable of processing and learning from large training
databases such as ImageNet [22], while training a dictionary
on a dataset this size can be challenging. Moreover, once a
CNN is trained, super-resolving an image is a purely feed-
forward process, which makes CNN based algorithms much
faster than traditional approaches. In this paper, we introduce
a CNN framework for video SR.

In the classification and retrieval domains, CNNs have been
successfully trained on video data [23], [24]. Training for
recovery purposes remains a challenging problem because the
video quality requirements for the training database are high
since the output of the CNN is the actual video rather than
just a label. Suitable videos for the SR task are uncompressed,
feature-rich and should be separated by shots/scenes. We show
that by pretraining the CNN with images we can bypass the
creation of a large video database. Our proposed algorithm
requires only a small video database for training to achieve very
promising performance.

2333-9403 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



110 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

The proposed CNN uses multiple LR frames as input to
reconstruct one HR output frame. There are several ways of
extracting the temporal information inside the CNN architec-
ture. We investigated different variations of combining the
frames and demonstrate the advantages and disadvantages of
these variations. Our main contributions can be summarized in
the following aspects:

• We introduce a video SR framework based on a CNN.
• We propose three different architectures, by modifying

each time a different layer of a reference SR CNN
architecture.

• We propose a pretraining procedure whereby we train
the reference SR architecture on images and utilize the
resulting filter coefficients to initialize the training of the
video SR architectures. This improves the performance of
the video SR architecture both in terms of accuracy and
speed.

• We introduce Filter Symmetry Enforcement, wich
reduces the training time of VSRnet by almost 20%
without sacrificing the quality of the reconstructed video.

• We apply an adaptive motion compensation scheme to
handle fast moving objects and motion blur in videos

The Caffe [41] model as well as the training and testing proto-
cols are available at http://ivpl.eecs.northwestern.edu/software.

The rest of the paper is organised as follows. We briefly intro-
duce deep learning and review existing deep learning based
image SR techniques in Section II. In Section III we explain
our proposed framework. Sections IV contains our results and
their evaluation and Section V concludes the paper.

II. RELATED WORK

A. Super-Resolution

Most of the state-of-the-art image SR algorithms are
learning-based algorithms that learn a nonlinear mapping
between LR and HR patches using coupled dictionaries [6]–
[9]. Overcomplete HR and LR dictionaries are jointly trained
on HR and LR image patches. Each LR image patch can be
represented as a sparse linear combination of atoms from the
LR dictionary. The dictionaries are coupled via common coef-
ficients a.k.a. representation weights. The dictionaries and the
coefficients can be found with standard sparse coding tech-
niques such as K-SVD [25]. An HR patch can then be recovered
by finding the sparse coefficients for an observed LR patch and
applying them to the HR dictionary. Timofte et al. [10] con-
sidered replacing the single large overcomplete dictionary with
several smaller complete dictionaries to remove the computa-
tionally expensive sparse coding step. This led to a significant
faster algorithm while maintaining the reconstruction accuracy.
A variation of [10] was recently proposed by Schulter et al.
[11]. A random forest model was trained instead of the cou-
pled dictionaries for the LR to HR patch mapping. Glasner et
al. [13] did not learn a dictionary from sample images. Instead
they created a set of downscaled versions of the LR image with
different scaling factors. Then patches from the LR image were
matched to the downscaled version of itself and its HR ‘par-
ent’ patch was used to construct the HR image. Learning-based

algorithms, although popular for image SR, are not very well
explored for video SR. In [14] a dictionary based algorithm is
applied to video SR. The video is assumed to contain sparsely
recurring HR keyframes. The dictionary is learned on the fly
from these keyframes while recovering HR video frames.

Many of the early works in multiframe SR have focussed on
reconstructing one HR image from a series of LR images using
a Bayesian framework [1]–[4]. The LR images were obtained
by blurring and subsampling the HR image and then apply-
ing different motions to each LR image, such as translation
and rotation. These algorithms generally solve two problems:
Registration estimation, where the motion between the LR
images is estimated, and image recovery, where the HR image
is estimated using the information recovered in the first step.
Bayesian video SR methods [2], [3] followed the same con-
cept but used a more sophisticated optical flow algorithm [3]
or a hierarchical block matching method [2] to find the motion
field, in order to be able to deal with real world videos with
more complex motion schemes. Ma et al. [5] extended the pre-
viously mentioned work in order to handle videos with motion
blur. They introduced a temporal relative sharpness prior, which
excludes pixels that are severely blurred. Because the image
recovery process is an ill-posted problem, image priors such
as constraints on the total variation [26] are introduced and
then a Bayesian framework is used to recover the HR image.
An alternative method to the conventional motion estimation
and image restoration scheme is presented in [27]. Instead
of explicit motion estimation, a 3-D Iterative Steering Kernel
Regression is proposed. The video is divided and processed in
overlapping 3D cubes (time and space). The method then recov-
ers the HR image by approximating the pixels in the cubes with
a 3D Taylor series.

Most video SR algorithms depend on an accurate motion
estimation between the LR frames. There is a plethora of tech-
niques in the literature for estimating a dense motion field
[28]–[30]. Optical flow techniques assume that the optical
flow is preserved over time. This information is utilized to
form the optical flow equation connecting spatial and tempo-
ral gradients. Assuming local constancy of the optical flow, an
over-determined system of equations is solved for determining
the translational motion components per pixel with sub-pixel
accuracy.

B. Deep Learning-Based Image Reconstruction

DNNs have achieved state-of-the-art performance on a num-
ber of image classification and recognition benchmarks, includ-
ing the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC-2012) [15], [16]. However, they are not very widely
used yet for image reconstruction, much less for video recon-
struction tasks. Research on image reconstruction using DNNs
includes denoising [31]–[33], impainting [31], deblurring [34]
and rain drop removal [35]. In [17]–[21], deep learning is
applied to the image SR task. Dong et al. [17] pointed out
that each step of the dictionary based SR algorithm can be re-
interpreted as a layer of a deep neural network. Representing an
image patch of size f × f with a dictionary with n atoms can
be interpreted as applying n filters with kernel size f × f on



KAPPELER et al.: VIDEO SUPER-RESOLUTION WITH CONVOLUTIONAL NEURAL NETWORKS 111

the input image, which in turn can be implemented as a convo-
lutional layer in a CNN. Accordingly, they created a CNN that
directly learns the nonlinear mapping from the LR to the HR
image by using a purely convolutional neural network with two
hidden layers and one output layer. Their approach is described
in more detail in Section III-A.

Wang et al. [19] introduced a patch-based method where a
convolutional autoencoder [36] is used to pretrain a SR model
on 33× 33 pixel, mean-subtracted, normalized LR/HR patch
pairs. Then the training patches are clustered according to their
similarity and one sub-model is fine-tuned on self-similar patch
pairs for each cluster. As opposed to [18], which uses standard
fully connected autoencoders, they used convolutional based
autoencoders which exploit the 2-dimensional data structure
of an image. The training data was augmented with transla-
tion, rotation, and different zoom factors in order to allow the
model to learn more visually meaningful features. Although
this measure does increase the size of the training dataset,
these augmentations do not occur in real image superresolu-
tion tasks. Moreover, although a convolutional architecture is
used, the images have to be processed patch by patch due to
the sub-models, whereas this is not necessary for our proposed
algorithm.

Cui et al. [18] proposed an algorithm that gradually increases
the resolution of the LR image up to the desired resolu-
tion. It consists of a cascade of stacked collaborative local
autoencoders (CLA). First, a non-local self-similarity search
(NLSS) is performed in each layer of the cascade to reconstruct
high frequency details and textures of the image. The resulting
image is then processed by an autoencoder to remove structure
distortions and errors introduced by the NLSS step. The algo-
rithm works with 7× 7 pixel overlapping patches, which leads
to an overhead in computation. Besides, as opposed to [17] and
our proposed algorithm, this method is not designed to be an
end-to-end solution, since the CLA and NLSS of each layer of
the cascade have to be optimized independently.

Cheng et al. [20] introduced a patch-based video SR algo-
rithm using fully connected layers. The network has two layers,
one hidden and one output layer and uses 5 consecutive LR
frames to reconstruct one center HR frame. The video is pro-
cessed patchwise, where the input to the network is a 5× 5× 5
volume and the output a reconstructed 3× 3 patch from the HR
image. The 5× 5 patches or the neighboring frames were found
by applying block matching using the reference patch and the
neighboring frames. As opposed to our proposed SR method,
[18] and [20] do not use convolutional layers and therefore do
not exploit the two-dimensional data structure of images.

Liao et al. [21] apply a similar approach which involves
motion compensation on multiple frames and combining
frames using a convolutional neural network. Their algorithm
works in two stages. In the first stage, two motion compensa-
tion algorithms with 9 different parameter settings were utilized
to calculate SR drafts in order to deal with motion compensa-
tion errors. In the second stage, all drafts are combined using a
CNN. However, calculating several motion compensations per
frame is computationally very expensive. Our proposed adap-
tive motion compensation only requires one compensation and
is still able to deal with strong motion blur (see Figure 10).

Fig. 1. Reference architecture for image super-resolution consisting of three
convolutional layers.

III. VIDEO SUPER-RESOLUTION WITH CONVOLUTIONAL

NEURAL NETWORK

A. Single Frame/Image Super-Resolution

Before we start the training of the video SR model, we pre-
train the model weights on images. For the image pretraining,
we use a model for image SR, henceforth referred to as a refer-
ence model, with the network architecture parameters proposed
in [17]. It has only convolutional layers which has the advantage
that the input images can be of any size and the algorithm is not
patch-based. The setup is shown in Figure 1. In it Y represents
the input LR image and X the output HR image. It consists
of three convolutional layers, where the two hidden layers H1
and H2 are followed by a Rectified Linear Unit (ReLU) [37].
The first convolutional layer consists of 1× f1 × f1 × C1 fil-
ter coefficients, where f1 × f1 is the kernel size and C1 the
number of kernels in the first layer. We use this notation to indi-
cate that the first dimension is defined by the number of input
images, which is 1 for the image SR case. The filter dimen-
sions of the second and third layers are C1 × f2 × f2 × C2 and
C2 × f3 × f3 × 1, respectively. The last layer can only have
one kernel in order to obtain an image as output. Otherwise an
additional layer with one kernel otherwise a postprocessing or
aggregation step is required. The input image Y is bicubically
upsampled so that the input (LR) and output (HR) images have
the same resolution. This is necessary because upsampling with
standard convolutional layers is not possible. A typical image
classification architecture often contains pooling and normal-
ization layers, which helps to create compressed layer outputs
that are invariant to small shifts and distortions of the input
image. In the SR task, we are interested in creating more image
details rather than compressing them. Hence the introduction of
pooling and normalization layers would be counter productive.
The model is trained on patches extracted from images from
the ImageNet detection dataset [38], which consists of around
400,000 images.

B. Video Super-Resolution Architectures

It has been shown for model-based approaches that includ-
ing neighboring frames into the recovery process is beneficial
for video SR [2]–[4]. The motion between frames is mod-
eled and estimated during the recovery process and additional
information is gained due to the subpixel motions among
frames. The additional information conveyed by these small



112 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

Fig. 2. Video SR architectures: In figure (a), the three input frames are concatenated (Concat Layer) before layer 1 is applied. Architecture (b) concatenates the
data between layers 1 and 2, and (c) between layers 2 and 3.

frame differences can also be captured by a learning-based
approach, if multiple frames are included in the training
procedure.

For the video SR architecture, we include the neighbor-
ing frames into the process. Figure 2 shows three options
for incorporating the previous and next frames into the pro-
cess. For simplicity, we only show the architecture for three
input frames, namely the previous (t− 1), current (t), and next
(t+ 1) frames. Clearly, any number of past and future frames
can be accomodated (for example, we use five input frames
in the experimental section). In order to use more than one
forward- and backward-frame, the architectures in Figure 2
can be extended with more branches. A single input frame
has dimensions 1×M ×N , where M and N are the width
and height of the input image, respectively. For the architec-
ture in (a), the three input frames are concatenated along the
first dimension before the first convolutional layer is applied.
The new input data for Layer 1 is 3-dimensional with size
3×M ×N . In a similar fashion we can combine the frames
after the first layer, which is shown in architecture (b). The
output data of layer 1 is again concatenated along the first
dimension and then used as input to layer 2. In architecture
(c) layers 1 and 2 are applied separately and the data is con-
catenated between layers 2 and 3. Not only the data size but
also the filter dimensions are larger for the video SR archi-
tectures. The new filter dimension for architecture (a) for the
first layer is 3× f1 × f1 × C1, since now we have 3 input
frames. The dimensions of layers 2 and 3 do not change. In
architecture (b), the filter coefficients of layer 2 increase to
3C1 × f2 × f2 × C2, whereas layers 1 and 3 remain the same.
Similarly, for architecture (c) the new filter dimension of layer
3 is 3C2 × f3 × f3 × 1.

C. Weight Transfer From Pretraining

The kernel width, height and their number used in the refer-
ence (Fig. 1) and video (Fig. 2) SR networks have to be equal,
so that the pretrained filter values from the reference model can

be transferred to the video SR models. The only difference is
the filter depth in layer 1 for architecture (a), layer 2 for archi-
tecture (b) and layer 3 in (c). Using three input frames instead
of one, the filter depth in the above mentioned layers is three
times larger in the video SR network than in the reference SR
one.

The filters of layers 2 and 3 in architecture (a) have the same
dimensions as in the reference SR architecture and can be trans-
ferred directly from the reference model. The filter dimension
of layer 1 in the pretrained model (Figure 1) and the video
model are different. The first dimension in the video model
is three times larger than in the reference model, as the three
input frames are concatenated along the temporal dimension.
Furthermore, the output data of layer 1 should be similar to the
output data obtained by the single frame SR, as layers 2 and
3 remain the same as in the single frame SR. To properly ini-
tialize the video SR model, let us assume that instead of using
3 consecutive frames of a video, we use the same frame three
times as input. Hence the output result of the video SR and the
image SR systems should be identical. Because layers 2 and
3 are the same in architecture (a) and the reference image SR
architecture, we just need to ensure that the input data to layer 2
(output of layer 1) is identical for the two systems. The output
data of layer 1, denoted by H1, for the image SR system has
dimensions M ×N × C, where C is the number of kernels1.
Its elements h(i, j, c) are calculated as

h(i, j, c) =

M−1∑

m=0

N−1∑

n=0

w(m,n, t, c)yt(i−m, j − n) + b(c),

(1)

where w(.) are the filter weights, b(.) the biases, c is the kernel
index and yt is the input frame at time t. The weight dimensions
are M ×N × 1× C. The third dimension is 1 because there is

1The input image is zero-padded with (f1 − 1)/2 zeros on each side in order
to have the same size for the input and output of the convolution.



KAPPELER et al.: VIDEO SUPER-RESOLUTION WITH CONVOLUTIONAL NEURAL NETWORKS 113

only one grayscale input image at time t. The same data for the
video SR architecture (a) is calculated as

hv(i, j, c) =
M−1∑

m=0

N−1∑

n=0

t+1∑

t′=t−1

wv(m,n, t′, c)

× ŷ(i−m, j − n, t′) + bv(c), (2)

where wv(.) and bv(.) are the weights and biases of the video
SR model and ŷ contains the three consecutive frames yt−1,yt,
and yt+1, which are concatenated to a 3 dimensional cube with
dimension M ×N × 3. Equation 2 can be expressed in terms
of the input images yt−1, yt and yt+1 as

hv(i, j, c) =
M−1∑

m=0

N−1∑

n=0

wv(m,n, t− 1, c)yt−1(i−m, j − n)

+
M−1∑

m=0

N−1∑

n=0

wv(m,n, t, c)yt(i−m, j − n)

+
M−1∑

m=0

N−1∑

n=0

wv(m,n, t+ 1, c)yt+1(i−m, j − n)

+ bv(c) (3)

By setting hv = h in Equation 3 and replacing yt+1 and yt−1

by yt, it is clear that the right-hand side of Equations 1 and 3
are equal, as long as the following two conditions are met for
all m,n, c

w(m,n, t, c) = wv(m,n, t− 1, c) + wv(m,n, t, c)

+ wv(m,n, t+ 1, c)

b(c) = bv(c), ∀m,n, c (4)

In our experiments, we initialize the video filter weights wv(.)
and the biases bv(.) as

wv(m,n, t− 1, c) = wv(m,n, t, c) = wv(m,n, t+ 1, c)

=
1

3
w(m,n, t, c)

bv(c) = b(c), ∀m,n, c (5)

which is equivalent to averaging the input images before
applying the first convolution layer. The same equations
can be applied for the concatenated layers of architectures
(b) and (c).

D. Filter Symmetry Enforcement (FSE)

An ideal motion compensated frame would be identical
to its reference frame. Hence all input frames would be the
same. Training a neural network as shown in Figure 2 with
such frames would theoretically lead to equal weights for the
separate layers (t− 1), (t), and (t+ 1) in layers 1 and 2 in
architecture (c) and in layer 1 in architecture (b). However,
even the most advanced optical flow algorithm will not be error
free, particularly in cases where frames contain occluded and/or
non-rigid objects. If we super-resolve each frame of a video
sequence, then each frame will at some point be in the position

Fig. 3. A schematic display of the filters (yellow squares) in architecture
(b) and (c) with filter symmetry enforcement for five input frames. The blue
lines connect the filter pairs that are the same.

of the current (t), preceding (t− 1) or following (t+ 1) frames.
Statistically the motion compensation error from frame t− 1
to the current frame t and from frame t+ 1 to frame t should
therefore be the same. Thus, we assume that the trained model
should end up learning temporally symmetric filters, meaning
that the filter weights of filter (t− 1) and (t+ 1) in Layer 1
should be the same. Similarly, all filters in Layer 2 should be
the same. Hence, we enforced the weights of the convolutional
layer 1 for the pairs (t− 1, t+ 1) and (t− 2, t+ 2) in archi-
tecture (b) to be the same. Similarly for architecture (c) we
enforced the same weights for the pairs mentioned above for
layers 1 and 2. The fact the same filter applied at a given spatial
location in the t− 1 frame can also be applied at the same loca-
tion in the t+ 1 frame, expressing the same local correlations,
indeed extends the convolutional nature of the network in the
temporal dimension. The symmetric filter pairs are connected
with the blue lines in Figure 3. Architecture (a) has no dupli-
cated filters as the concatenation of the frames happens before
the first convolution is applied. For 3 input frames, we simply
omit the frame pairs (t− 2, t+ 2).

In order to implement the filter symmetry, we apply the gradi-
ents from the backpropagation of the symmetric filters to both
filters at the same time. In other words, the symmetric filters
share the same weights.

E. Motion Compensation

We tested a number of optical flow estimation algo-
rithms [28]. Both, accuracy of the motion estimates and
speed of implementation were taken into account. We chose
Druleas algorithm [30] for our framework. The algorithm
uses a Combined Local-Global approach with Total Variation
(CLG-TV) and demonstrates good results even when large
displacements are present.

1) Adaptive Motion Compensation: Motion compensation
can be difficult if large motion or motion blur occurs in
the video. This can lead to undesired boundary effects and
artifacts in the HR reconstruction and will therefore reduce
performance. We propose the use of an adaptive motion com-
pensation (AMC) scheme that reduces the influence of neigh-
boring frames for the reconstruction in case of misregistration.



114 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

Motion-compensation is applied according to the following
equation

yamc
t−T (i, j) = (1− r(i, j))yt(i, j) + r(i, j)ymc

t−T (i, j), (6)

where r(i, j) controls the convex combination between the ref-
erence and the neighboring frame at each pixel location (i, j).
yt is the center frame, ymc

t−T is the motion compensated neigh-
boring frame and yamc

t−T is the neighboring frame after applying
adaptive motion compensation. Similarly to [39], r(i, j) is
defined as

r(i, j) = exp(−ke(i, j)), (7)

where k is a constant parameter and e(i, j) is the motion com-
pensation or misregistration error. Large errors can be due to
large motion, occlusion, blurring of the object, or due to the
fact that (i, j) is close to a motion boundary. According to
Equation 6 and 7 when the motion compensation error e(i, j)
is large at the location (i, j), the corresponding weight r(i, j)
is small, which means that the adaptively motion compensated
pixel is just the pixel in the current frame yt. In other words,
the information from the neighboring frames is not used, since
it is not reliable. The image of r(i, j) in Figure 9 provides a
map of the accuracy of the motion estimation and compen-
sation. Dark pixels correspond to values close to zero, which
means no information of the neighboring frames is utilized.
Using the adaptive motion compensation helped to improve the
performance for challenging videos, as will be shown in the
experimental section.

IV. EXPERIMENTAL SECTION

In this section we first compare the proposed algorithm to
state-of-the-art image and video SR algorithms. Next, we inves-
tigate qualitatively and quantitatively the performance of the
different proposed video SR architectures, followed by a study
of the effects of pretraining, FSE, and motion compensation. At
last, we analyze the execution time of our method and compare
it to other algorithms.

A. Datasets

We used a publicly available video database [40] which pro-
vides high quality movies. The Myanmar video sequence was
used for the training and testing of our algorithm. The video
contains 59 scenes from which we use 53 for training and 6
for testing. We use 4 frames from each test sequence and cal-
culate the average PSNR and SSIM values from the 24 (6× 4)
resulting test frames as a performance measure. The Myanmar
video is uncompressed and has 4K resolution (3840× 2160
pixels). We downsampled the video by a factor of 4 resulting in
a 960× 540 pixel resolution, in order to better compare to the
state-of-the-art SR algorithms, as most of the published ones
(Video and Image) work with images of similar resolution.

Although we do not use the same shots of the Myanmar video
sequence for testing and training, it can be argued that the dif-
ferent shots share a similar style as they are from the same

TABLE I
SPECIFICATIONS OF VIDEOSET4

video. We therefore chose to test our algorithm on a set of other
videos from a different source. Our second dataset, referred to
as Videoset4, consists of the four test videos walk, foliage, city,
and calendar which were also used in [3]. The specifications of
the videos are shown in Table I. We skip the first and last two
frames of each video in order to always have a complete set of
5 consecutive frames for the video SR process.

B. CNN Model Parameters

We implemented our proposed algorithm with the Caffe
framework [41]. The image SR network for the pretraining was
implemented with the settings proposed in [17]. The network
has 3 convolutional layers (see Figure 1), where layers 1 and
2 are each followed by a ReLU. Layer 1 has 64 kernels with
a kernel size of 9× 9, Layer 2 has 32 kernels with size 5× 5
and the third layer has one 5× 5 kernel. The filters of the video
SR architectures have the same configurations as the image SR
architecture.

C. Training Procedure

Following the literature ([6], [17]), we converted the images
and videos into the YCbCr colorspace and only used the
luminance channel (Y) for training, testing, and PSNR/SSIM
calculations. For the color images shown in this paper, we bicu-
bically upsampled the chrominance channels, Cb and Cr. In
order to create the video training set, we extracted sets of 5
consecutive frames from the training video scenes. Then, we
downsampled them by the desired factors 2, 3, or 4 using the
Matlab implementation of imresize and upsampled the resulting
LR frames with bicubic interpolation to their original resolu-
tion. Afterwards, we calculated the optical flow from the first
and the last two frames towards the center frame and computed
the motion compensated frames. From the resulting 5 frames
(4 motion compensated and one center frame) we extracted
36× 36× 5 data cubes, that is, 36× 36 pixel patches from 5
consecutive frames. We dismissed patches/data cubes if they
did not contain sufficient structures. Patches were excluded if
their pixel variance did not exceed 0.00352. The pixel variance
may not be the best measure of patch structure, but it is suffi-
cient for our purpose. The created training database consists of
about 900,000 data cubes.

In order to optimize the filter weights and biases in the
training phase, we need to define a loss function that will be
minimized. The Euclidean distance between the output image
and the ground truth image, which is known for the training
dataset, is the measure we use, since also the Peak Signal-to-
Noise Ratio (PSNR) performance measure is directly related to
the Euclidean distance. In order to avoid border effects during

2The image intensity values are scaled to the range [0,1].



KAPPELER et al.: VIDEO SUPER-RESOLUTION WITH CONVOLUTIONAL NEURAL NETWORKS 115

TABLE II
AVERAGE PSNR AND SSIM VALUES FOR THE Myanmar TEST SEQUENCES. THE RESULT OF THE PROPOSED METHOD (VSRNET) IS SHOWN

IN THE LAST COLUMN

TABLE III
AVERAGE PSNR AND SSIM VALUES FOR THE Videoset4 DATASET. THE RESULT OF THE PROPOSED METHOD (VSRNET) IS SHOWN IN

THE LAST COLUMN

the training, we can either add zero padding to the 36× 36 pixel
patches (which we do not do) or allow the output of the convo-
lution to be of smaller size; that is the output patch shrinks with
each convolutional layer by (filter size - 1). This shrunk output
patch corresponds to the 20× 20 center pixels of the original
patch. These center pixels are then used for the calculation of
the loss function. The model weights provided by SRCNN [17]
were used for the image SR pretraining. In the video SR train-
ing we used a batch size of 240, a learning rate of 10−4 for the
first two layers and 10−5 for the last layer and a weight decay
rate of 0.0005 [41]. All the results shown in the experimental
Section are evaluated after 200,000 iterations if pretraining was
used, and 400,000 iterations otherwise. In all cases we tested
convergence has been achieved with such a number of itera-
tions. A reduction of the learning rate did not lead to any further
improvements. Therefore, we kept the learning rate constant
throughout the whole training. It took about 22 hours to train
a network model as used in Tables II and III, not including the
pretraining.

D. Comparison to the State-of-the-Art

We compare our algorithm, henceforth refered to as Video
SR network (VSRnet), to single frame and video SR algo-
rithms. Bicubic interpolation is included as a baseline. Super-
resolving a video can be achieved by simply applying Image
SR to each frame separately. Therefore we also compared our
algorithm to the state-of-the-art image SR algorithms. These
are dictionary-based Sparse Coding SR (ScSR) [6], adjusted
anchored neighbor regression (A+) [10] and SRCNN [17]. The
implementations and parameters we used were provided by the
authors of the paper. Furthermore we compared to the state-
of-the-art video SR algorithms. All video SR methods were
tested using ± 2 neighboring frames. The Enhancer [42] is a
commercially available software, which we tested on the high-
est quality settings. The source code of the Bayesian adaptive
video SR method from [3] (Bayesian) is unavailable, thus, we

used the reimplementation provided and used by Ma et al. [5]
in their paper. We also tested the Bayesian method described in
[5] (Bayesian-MB), which can handle motion blurred videos.
The parameters of the Bayesian methods were tuned for each
video. The implementation of the Artificial Neural Network
(ANN) architecture described in [20] was not available
either.

We reimplemented it with two changes which improved its
performance. The first change in our implementation is that we
used 19× 19 pixel bicubically upsampled input patches instead
of the 5× 5 pixel input patches used in [20]. The reason for
this is that we wanted to perform a direct comparison with
our approach which uses a bicubically interpolated input. The
second change was to replace the sigmoid activation function
used in [20] with ReLU since the latter provides faster conver-
gence. Both changes led to a better PSNR. We used the same
database for the training of the two networks so we believe that
the experimental comparison is fair.

We used architecture (b) of VSRnet for the results in
Tables II and III since it provides the best performance among
the three proposed architectures. Table II shows the PSNR
and SSIM values for the different algorithms tested on the
Myanmar sequence. The same algorithms have been tested
on the Videoset4 dataset with the results shown in Table III.
The proposed VSRnet provides the highest average PSNR in
all experiments except for upscale factor 4 and Videoset4,
where the Bayesian method outperforms VSRnet by 0.22 dB.
However, in average VSRnet outperforms the Bayesian method
by 1.45 dBs per testcase. In terms of SSIM, VSRnet is only
outperformed by the Bayesian method in three cases. On the
Myanmar dataset the PSNR margin to the second best algo-
rithm (SRCNN) is 0.69 dB for upscale factor 2, 0.54 dB for
factor 3 and 0.59 dB for factor 4. The gain for the Videoset4
is lower with 0.60 dB and 0.28 dB for upscale factors 2 and 3,
respectively. The results indicate that the gain with Video SR is
higher for lower upscaling factors, which is most likely due to
the more accurate motion compensation.



116 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

Fig. 4. Comparison to the State-of-the-Art: SR frames from the Myanmar video compared to our method (VSRnet) for upscale factor 4.

Figure 4 shows example frames and their corresponding
PSNR values from the Myanmar test set using upscale factor
4. Figure 5 shows an example frame from the city and calendar
videos in Videoset4 for upscale factor 2. We show the original
frame and the result obtained by bicubic interpolation, and our
proposed algorithm (VSRnet). In addition, we show the results
of SRCNN, A+ and the Bayesian method. The door shown in
the zoomed rectangle in Figure 4 was reconstructed more accu-
rately by the proposed VSRnet algorithm compared to the other
algorithms. We can also see a more accurate line reconstruction
in the city frame and a better reconstruction of the letter ”M” in
the calendar. The Bayesian method applies too much deblur-
ring which is why it appears to create sharp images despite
the lower PSNR. There are visible ringing artifacts around the
tower in the Bayesian reconstruction of the Myanmar sequence
and ripples in the Calendar sequence.

E. Architecture Comparison

In this section we compare the different configuration param-
eters of the proposed SRnet. The PSNR results for the Myanmar
test set are shown in Table IV. The concatenation of the multiple
frames can happen at different layers of the network. Figures 2
(a), (b) and (c) show the configurations where the frames are
concatenated at the first, second and third layer, respectively.
In order to show the benefits of the video training, we added
the last column (AVG), where we apply single frame SR to
each frame separately and then average the resulting images.
The best PSNR is achieved with architecture (b); however, the
performance of all three architecture types is similar. We also

show the advantage of the proposed architectures over single
frame SR.

Figure 6 shows the PSNR versus the training time for
200,000 iterations for each architecture type with 3 input frames
(red) and 5 input frames (blue). The PSNR performances
are evaluated on the Myanmar test video sequences shown
in Table IV. The graph shows that architecture (a) requires
the least training time, followed by architecture (b) and (c).
Combining the frames at a later stage introduces more weights
to the network and therefore leads to the longer training time.
The number of weights in layer 1 for example is the same
in architectures (a), (b) and (c). Layer 2 however has 3 times
more weights to learn in (b) and (c) than in (a). Equivalently,
Layer 3 in (c) has 3 times more weights than in (a) and
(b). Furthermore, using more input frames also leads to more
weights, hence to a longer training time. Using more input
frames only affects the first layer in architecture (a), the increase
in training time is therefore not as big as for (b) and (c), which
is visible in Figure 6.

F. Pretraining

In this section we demonstrate the importance of pretraining.
Table V shows the PSNR for architecture (b) with and without
pretraining. The filters of the models without pretraining were
initialized with random Gaussian distributed values with stan-
dard deviation of 0.001 and were trained for 400,000 iterations.
The pretrained models were initialized with the filter weights
from the single frame SR models. The performance of these
models did not improve anymore after 200,000 iterations due



KAPPELER et al.: VIDEO SUPER-RESOLUTION WITH CONVOLUTIONAL NEURAL NETWORKS 117

Fig. 5. Comparison to the State-of-the-Art: SR frames from the city and calendar videos compared to our method (VSRnet) for upscale factor 2.

to the pretrained values. We can see that even without pretrain-
ing we achieve PSNR values comparable to the state-of-the-art.
However using pretraining improves the PSNR by an additional
0.62 dBs.

In Figure 7, we show the filter values of the first convolu-
tional layer of architecture (b) trained for upscale factor 3 and 3
input frames. We only show the first layer because these filters
are two dimensional and can be easily displayed as images. The
first row shows the filters learned with pretraining after 200’000
iterations, and the second row the same filters trained without
pretraining using random initialization after 400’000 iterations.

The resulting filters with pretraining did not change much from
the initial values. The filter for all 3 time instances (t− 1), t,
and (t+ 1) look very similar, since these filters were all ini-
tialized with the same values from pretraining. The resulting
filters after 400,000 iterations are shown in the second row. We
can see in this case that different filter pattern emerge for the
different time instances. Due to the independent random initial-
ization of the filter coefficient values, they do not develop any
symmetric patterns. We can see a diagonal pattern in the fil-
ters of the center instance t whereas the filters in the instances
(t− 1) and (t+ 1) tend to be more round shaped. Note that



118 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

TABLE IV
COMPARISON OF THE DIFFERENT ARCHITECTURES SHOWN

IN FIGURE 2. THE TABLE SHOWS THE AVERAGE PSNR
OBTAINED FROM THE Myanmar DATASET. AS A REFERENCE, WE SHOW

THE LAST COLUMN (AVG), WHERE WE APPLY SINGLE FRAME SR TO

EACH FRAME AND THEN AVERAGE THE RESULTING FRAMES. IF ONLY

ONE FRAME IS USED, ARCHITECTURES (A), (B), AND (C) ARE ALL

EQUIVALENT TO THE REFERENCE SINGLE FRAME ARCHITECTURE

DESCRIBED IN FIGURE 1, HENCE THE PSNRS FOR

ONLY ONE FRAME ARE ALL THE SAME

Fig. 6. Training time versus PSNR of different architectures.

TABLE V
PSNR OF THE MYANMAR TESTSET OF ARCHITECTURE

(B) FOR UPSCALE FACTOR 3 WITH 3 INPUT FRAMES

WITH AND WITHOUT PRETRAINING

some of the filters appeared to be ”dead”. The same observation
was made in [17] and [43]. The uniform or random filters (dead
filters) are a side-effect of the ReLU unit. A large update step
can cause the weights to update in a way that the neuron will
never activate again. Future gradients will therefore always be
zero and the neuron will not be updated anymore, which leads
to the observed dead filter. There are different ways to reduce
the number of dead filters such as leaky ReLU [37], gradient
clipping, reduction of learning rate and different initialization
values and constant biases. Using pretraining definitely helps
reducing their number. From these methods, reducing the learn-
ing rate and lowering the standard deviation of the initialization
values proofed to be most effective.

G. Filter Symmetry Enforcement

In this section, We trained the architecture (c) with 3
input frames to demonstrate the effect of the Filter Symmetry
Enforcement (FSE) described in Section III-D. Figure 8 shows
the reconstruction error during training with and without FSE.
After 200,000 iterations, both models converged to the same
reconstruction error. The PSNR difference of models trained

with and without FSE lay within ≤ 0.01 dBs; however we can
see that the same reconstruction error achieved after 100,000
iterations without FSE only requires 82,000 iterations when
using FSE. The faster convergence during the training phase
can be explained with the reduced number of unknown weights.
Using FSE accelerates the training procedure by almost 20%
while maintaining the same performance.

H. Motion Compensation (MC)

We trained the VSRnet models with and without motion
compensated frames to show the effect of MC. We calculated
the resulting average PSNRs for both cases. We can see that
using MC improves the PSNR by 0.22 dBs. Training with MC
and testing without MC or vice versa is not consistent and has a
negative impact on the PSNR, as expected. By applying motion
compensation, the neighboring frames become very similar to
the center frame. The remaining differences between the refer-
ence and the motion compensated frames contain information
that is beneficial for the video SR learning process. In order to
verify this, we trained a model where we replaced the 5 con-
secutive input frames with the center frame. Therefore for this
training there is no temporal information available. This model
is comparable with the single frame architecture in Figure 1 but
with 5 times more filter coefficients. This model achieved an
average PSNR of 30.18 dB, which is 0.42 dB lower than the
MC result presented in Table VI.

1) Adaptive Motion Compensation (AMC): The average
PSNR of AMC on our test videos is 30.43 dB, which is 0.17 dB
lower than with normal MC. However, the use of AMC led to
significant improvements on frames with strong motion blur
and fast moving objects. Figure 9 shows two example frames
which experience strong motion blur. The first frame is from
the walk sequence where two pigeons are flying through the
scene and the second one is from the foreman sequence, briefly
showing a hand of the foreman. The images on the right of the
original images show the r values from equation 7 averaged
over the four neighbor frames, where a dark color corresponds
to a small r or to a large motion compensation error, respec-
tively. The pigeons and the hand are clearly visible as dark spots
in the r-value images. We tested the frames using the proposed
VSRnet algorithm with AMC and standard MC, where we set
the constant k from Equation 7 to 1/8. In addition, we tested the
Bayesian-MB method [5], which is designed to handle motion
blurred frames. The results are shown in Figure 10. The stan-
dard MC approach fails to estimate the motion of these objects
which leads to a poor SR reconstruction. Even the Bayesian-
MB method produces artifacts in the shape of small dots in
both examples. The AMC on the other hand successfully recon-
structs the pigeon and the hand with a PSNR improvement of
0.27 dB and 0.95 dB respectively.

I. Execution Time Analysis

We measured the average runtime to super-resolve one frame
from a video sequence with a resolution of 704× 576 pixels.
We used the average PSNR value of upscale factor 3 from all
four videos from the Videoset4 and the Myanmar test sequence.



KAPPELER et al.: VIDEO SUPER-RESOLUTION WITH CONVOLUTIONAL NEURAL NETWORKS 119

Fig. 7. Filters from the first layer of architecture (b) for upscale factor 3. The first row shows the filter coefficients after 200,000 iterations with pretraining.
Each figure shows 64 filters each of size 9× 9. The second and row shows the resulting filter coefficients after training with random initialization after 400,000
iterations.

Fig. 8. The reconstruction error of architecture (c) with 3 frames during the
training with and without Filter Symmetry Enforcement (FSE).

The test was performed on a Linux workstation with an Intel
Xeon E5-2630 processor with 2.4 GHz and 128 GB RAM,
and a NVIDIA Geforce GTX Titan Z graphics card with 2880
cores per GPU unit3. The Enhancer and the Bayesian-MB algo-
rithm was only available for the Windows operating system and
had to be tested on a different workstation which runs with
an Intel Xeon E3-1245 3.3 GHz processor. The average run-
time of the Enhancer on an equivalent workstation can therefore

3The Titan Z card has 5760 cores split between two GPU units. We were
utilizing only one GPU unit for the testing.

TABLE VI
AVERAGE PSNR WITH AND WITHOUT MOTION COMPENSATION

(MC) FOR UPSCALE FACTOR OF 3 FOR THE Myanmar AND THE Videoset4
VIDEOS COMBINED. THE MOTION COMPENSATION WAS APPLIED TO

BOTH THE TRAINING AND TEST SETS. ALL POSSIBLE COMBINATION OF

TRAINING AND TESTING WERE EVALUATED

be slightly different on a system specified before. Figure 11
shows the runtime and the performance of the different algo-
rithms as well as the proposed VSRnet algorithm. Image SR
algorithms are shown in red color, video SR algorithms in
magenta and the proposed VSRnet in blue. The runtime of
VSRnet, ANN and SRCNN was measured with and without
GPU acceleration. Despite GPU support, we have a slow run-
time for the ANN algorithm, because the video data has to be
processed patch-wise. The other algorithms were not available
with GPU acceleration and were therefore measured without
GPU support.

The runtime of VSRnet is mainly determined by the motion
compensation, which takes about 55 second per frame. The
neural net computation itself only takes 0.24 seconds with
GPU or 16 seconds without GPU support. VSRnet-NoMC and
VSRnet-NoMC-GPU show the runtime and the PSNR of the
proposed algorithm without using motion compensation (MC).
Despite the PSNR loss of about 0.23 dB, VSRnet-noMC still



120 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

Fig. 9. The original center frame and its average r value of the four motion compensated neighbor frames for the walk and foreman sequence.

Fig. 10. Frames with motion blurred objects from the walk and foreman sequence, reconstructed with MC and AMC for upscale factor 3.

Fig. 11. Runtime/PSNR comparison. The runtime for SRCNN, ANN and
VSRnet are also shown with GPU acceleration which is denoted with (-GPU).
VSRnet-NoMC is the runtime of the proposed algorithm without using motion
compensation.

outperforms the state-of-the art while using only about 240
milliseconds to compute one frame.

Methods such as SrSC [6] or the Bayesian approach [3] are
iterative algorithms and therefore computationally expensive
which leads to slow running times. The output of a CNN-
based approach on the other hand is calculated as a single
feed-forward process. Their computation time is very fast even
without GPU acceleration. Using GPU support, the runtime of
the VSRnet can be further reduced from 16 seconds per frame

without GPU to 0.24 seconds per frame with GPU, which is
about 66 times faster.

V. CONCLUSION

In this paper we have introduced a video SR algorithm
using convolutional neural nets. Our proposed CNN exploits
spatial as well as temporal information. We have investigated
different architectures and have shown their advantages and
disadvantages. Using motion compensated input frames, filter
symmetry enforcement and a pretraining method we were able
to improve the reconstruction quality and reduce the training
time. Finally, we introduced an adaptive motion compensation
scheme to deal with motion blur and fast moving objects. We
presented an algorithm that outperforms the current state-of-the
art algorithms in video SR.

REFERENCES

[1] S. D. Babacan, R. Molina, and A. K. Katsaggelos, “Variational Bayesian
super resolution,” IEEE Trans. Image Process., vol. 20, no. 4, pp. 984–
999, Apr. 2011.

[2] S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, “Maximum a
posteriori video super-resolution using a new multichannel image prior,”
IEEE Trans. Image Process., vol. 19, no. 6, pp. 1451–1464, Jun. 2010.

[3] C. Liu and D. Sun, “On Bayesian adaptive video super resolution,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 346–360, Feb. 2014.



KAPPELER et al.: VIDEO SUPER-RESOLUTION WITH CONVOLUTIONAL NEURAL NETWORKS 121

[4] A. K. Katsaggelos, R. Molina, and J. Mateos, “Super resolution of images
and video,” Synth. Lect. Imag. Video Multimedia Process., vol. 1, no. 1,
pp. 1–134, 2007.

[5] Z. Ma, J. Jia, and E. Wu, “Handling motion blur in multi-frame super-
resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015,
vol. 1.

[6] J. Yang, J. Wright, T. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, Nov. 2010.

[7] J. Yang, Z. Wang, Z. Lin, X. Shu, and T. Huang, “Bilevel sparse coding
for coupled feature spaces,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2012, pp. 2360–2367.

[8] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in Curves and Surfaces. New York, NY, USA:
Springer, 2012, pp. 711–730.

[9] S. Wang, L. Zhang, Y. Liang, and Q. Pan, “Semi-coupled dictionary
learning with applications to image super-resolution and photo-sketch
synthesis,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012,
pp. 2216–2223.

[10] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored neigh-
borhood regression for fast super-resolution,” in Proc. IEEE Asian Conf.
Comput. Vis., 2014, pp. 1920–1927.

[11] S. Schulter, C. Leistner, and H. Bischof, “Fast and accurate image upscal-
ing with super-resolution forests,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2015, pp. 3791–3799.

[12] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2015, pp. 5197–5206.

[13] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a sin-
gle image,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2009,
pp. 349–356.

[14] B. C. Song, S. C. Jeong, and Y. Choi, “Video super-resolution algorithm
using bi-directional overlapped block motion compensation and on-the-
fly dictionary training,” IEEE Trans. Circuits Syst. Video Technol., vol. 21,
no. 3, pp. 274–285, Mar. 2011.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Neural Inf. Process.
Syst. (NIPS), 2012, pp. 1097–1105.

[16] C. Szegedy et al., “Going deeper with convolutions,” in Proc. Int. Conf.
Comput. Vis. Pattern Recog., 2014, pp. 1–9.

[17] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Proc. IEEE Eur. Conf. Comput.
Vis., 2014, pp. 184–199.

[18] Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen, “Deep network cas-
cade for image super-resolution,” in Proc. IEEE Eur. Conf. Comput. Vis.,
2014, pp. 1–16.

[19] Z. Wang et al., “Self-tuned deep super resolution,” in Proc. Comput. Vis.
Pattern Recog. Workshops, 2015, pp. 1–8.

[20] M. Cheng, N. Lin, K. Hwang, and J. Jeng, “Fast video super-resolution
using artificial neural networks,” in Proc. 8th Int. Symp. Commun. Syst.
Netw. Digital Signal Process. (CSNDSP), 2012, pp. 1–4.

[21] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia, “Video super-resolution via deep
draft-ensemble learning,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
2015, pp 531–539.

[22] J. Deng, W. Dong, R. Socher, and L. Li, “A large-scale hierarchical
image database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2009,
pp. 248–255.

[23] A. Karpathy and G. Toderici, “Large-scale video classification with con-
volutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2014, pp. 1725–1732.

[24] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2012.

[25] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[26] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, Nonlinear Phenom., vol. 60, nos.
1–4, pp. 259–268, 1992.

[27] H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution with-
out explicit subpixel motion estimation,” IEEE Trans. Image Process.,
vol. 18, no. 9, pp. 1958–1975, Sep. 2009.

[28] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” Int. J. Comput.
Vis., vol. 92, no. 1, pp. 1–31, 2011.

[29] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation and
their principles,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recog., 2010, pp. 2432–2439.

[30] M. Drulea and S. Nedevschi, “Total variation regularization of local-
global optical flow,” in Proc. IEEE Conf. Intell. Transp. Syst. (ITSC),
2011, pp. 318–323.

[31] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with
deep neural networks,” in Proc. Neural Inf. Process. Syst. (NIPS), 2012,
pp. 1–9.

[32] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with BM3D?” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recog., 2012, pp. 2392–2399.

[33] V. Jain and H. Seung, “Natural image denoising with convolutional
networks.” in Proc. Neural Inf. Process. Syst. (NIPS), 2008, pp. 1–8.

[34] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Scholkopf, “A machine
learning approach for non-blind image deconvolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2013, pp. 1067–1074.

[35] D. Eigen, D. Krishnan, and R. Fergus, “Restoring an image taken through
a window covered with dirt or rain,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), 2013, pp. 633–640.

[36] J. Masci, U. Meier, D. Cirean, and J. Schmidhuber, “Stacked convo-
lutional auto-encoders for hierarchical feature extraction,” in Artificial
Neural Networks and Machine Learning—ICANN. New York, NY, USA:
Springer, vol. 1, pp. 52–59, 2011.

[37] A. Maas, A. Hannun, and A. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. ICML, 2013, vol. 28, p. 1.

[38] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[39] M. K. Park, M. G. Kang, and A. K. Katsaggelos, “Regularized high-
resolution image reconstruction considering inaccurate motion informa-
tion,” Opt. Eng., vol. 46, no. 11, p. 117004, 2007.

[40] Myanmar 60p, Harmonic Inc. (2014). [Online]. Available:
http://www.harmonicinc.com/resources/videos/4k-video-clip-center.

[41] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[42] Infognition. (2010). Video Enhancer [Online]. Available: http://www.
infognition.com/videoenhancer

[43] M. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proc. Comput. Vis. (ECCV’14), 2014, vol. 8689,
pp. 818–833.

Armin Kappeler received the B.S. degree in
electrical engineering from the Hochschule fuer
Technik Rapperswil (HSR), Rapperswil, St. Gallen,
Switzerland, in 2004, and the M.S. degree in elec-
trical engineering from the Department of Electrical
Engineering and Computer Science, Northwestern
University, Evanston, IL, USA, in 2012, where he is
currently pursuing the Ph.D. degree in electrical engi-
neering. In 2015, he joined Yahoo Inc., Sunnyvale,
CA, USA, where he is currently working on an image
classification algorithm using deep neural networks.

His research interests include deep neural networks for image and video
restoration and classification, computer vision, and machine learning.

Seunghwan Yoo received the B.E and M.S degrees in
electrical engineering from Sogang University, Seoul,
South Korea, in 2005 and 2007, respectively. He is
currently pursuing the Ph.D. degree in electrical engi-
neering at Northwestern University, Evanston, IL,
USA. He joined the Image and Video Processing
Laboratory in 2013. His research interests include
image and video super-resolution and deconvolution.

Qiqin Dai received the B.S. degree in automa-
tion from Zhejiang University, Hangzhou, China, in
2012. He is currently pursuing the Ph.D. degree
at the Image and Video Processing Laboratory,
Northwestern University, Evanston, IL, USA. His
research interests include digital image processing,
computer vision, computational photography, and
high dynamic range imaging.



122 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

Aggelos K. Katsaggelos (F’98) received the diploma
degree in electrical and mechanical engineering
from the Aristotelian University of Thessaloniki,
Thessaloniki, Greece, in 1979, and the M.S. and
Ph.D. degrees in electrical engineering from the
Georgia Institute of Technology, Atlanta, GA, USA,
in 1981 and 1985, respectively. In 1985, he joined the
Department of Electrical Engineering and Computer
Science, Northwestern University, where he is cur-
rently a Professor of the Joseph Cummings Chair.
He was previously the Ameritech Chair of the

Information Technology and the AT&T Chair. He is also a member of the
Academic Staff, NorthShore University Health System, Evanston, IL, USA, an
Affiliated Faculty with the Department of Linguistics and he has an appoint-
ment with the Argonne National Laboratory. He has authored extensively
in the areas of multimedia signal processing and communications (over 230
journal papers, 500 conference papers, and 40 book chapters) and is the

holder of 25 international patents. He is the coauthor of Rate-Distortion Based
Video Compression (Kluwer, 1997), Super-Resolution for Images and Video
(Claypool, 2007), Joint Source-Channel Video Transmission (Claypool, 2007),
and Machine Learning Refined (Cambridge University Press, 2016). He has
supervised 54 Ph.D. theses so far. Among his many professional activities
Prof. Katsaggelos was the Editor-in-Chief of the IEEE Signal Processing
Magazine (1997–2002), a BOG Member of the IEEE Signal Processing Society
(1999–2001), a member of the Publication Board of the IEEE Proceedings
(2003–2007), and he is currently a Member of the Award Board of the IEEE
Signal Processing Society. He is a Fellow of the SPIE (2009). He was the recip-
ient of the IEEE Third Millennium Medal (2000), the IEEE Signal Processing
Society Meritorious Service Award (2001), the IEEE Signal Processing Society
Technical Achievement Award (2010), an IEEE Signal Processing Society Best
Paper Award (2001), an IEEE ICME Paper Award (2006), an IEEE ICIP Paper
Award (2007), an ISPA Paper Award (2009), and a EUSIPCO Paper Award
(2013). He was a Distinguished Lecturer of the IEEE Signal Processing Society
(2007–2008).


