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Sparse Representation-Based Multiple
Frame Video Super-Resolution

Qiqin Dai, Seunghwan Yoo, Armin Kappeler, and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract— In this paper, we propose two multiple-frame super-
resolution (SR) algorithms based on dictionary learning (DL)
and motion estimation. First, we adopt the use of video bilevel
DL, which has been used for single-frame SR. It is extended to
multiple frames by using motion estimation with sub-pixel accu-
racy. We propose a batch and a temporally recursive multi-frame
SR algorithm, which improves over single-frame SR. Finally, we
propose a novel DL algorithm utilizing consecutive video frames,
rather than still images or individual video frames, which further
improves the performance of the video SR algorithms. Extensive
experimental comparisons with the state-of-the-art SR algorithms
verify the effectiveness of our proposed multiple-frame video SR
approach.

Index Terms— Video super-resolution, dictionary learning,
sparse coding, optical flow, motion estimation.

I. INTRODUCTION

V IDEO super-resolution, namely estimating the high-
resolution (HR) frames from low-resolution (LR) input

sequences, has become one of the fundamental problems
in image and video processing and has been extensively
studied for decades. With the popularity of high-definition
display devices, such as High-definition television (HDTV), or
even Ultra-high-definition television (UHDTV), on the market,
there is an avid demand for transferring LR videos into HR
videos so that they are displayed on high resolution TV
screens.

Figure 1 shows the degradation model relating the HR
sequence to the LR sequence which is the input to the SR
algorithms. The HR frames I h

k are of size L N1 × L N2 and the

degraded LR frames Ĩ l
k are of size N1×N2, where L represents

the down-sampling factor. The original multiple HR frames
are related through warping based on the motion fields. The
HR frames are smoothed with a blur kernel, down-sampled
and contaminated by additive Gaussian noise to generate the
observed LR frames. The degradation model of the kth frame
is therefore given by

Ĩ l
k = DB I h

k + εk, (1)
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where I h
k and Ĩ l

k are the HR and LR frames, respectively,
written in lexicographical notation as vectors, B represents the
blur matrix, D is the down-sampling matrix and εk represents
the Gaussian noise vector. Although Equation (1) provides the
relationship between the kth HR and LR frames, we can find
the relationship between any two frames Ĩ l

i and I h
k via the

motion model. In that sense, Equation (1) can be extended to

Ĩ l
k = DBC(di,k)I h

i + εi,k , (2)

where C(di,k ) is the warping matrix generated by the motion
vectors di,k , mapping frame i into frame k, and εi,k captures
both the mis-registration error and the Gaussian noise. For
i = k, Equation (2) turns into Equation (1), since C(di,k)
becomes the identity operator. Equation (2) provides the
additional observations for the LR frame Ĩ l

k , for various values
of i �= k. The objective of the multiple frame SR algorithm
is to operate on the observed multiple LR frames Ĩ l

k provided
by Equation (2) for various values of i and obtain an estimate
of the HR frame I h

k .
SR techniques have been extensively studied in the liter-

ature. Detailed literature reviews of this topic can be found
in [1]–[4]. With one class of approaches multiple observations
are used in increasing the resolution of one image, as described
in Equation (2). Such multiple observations can be due to
global sub-pixel motion between the camera and the scene or
due to the dynamics of the scene, i.e., the sub-pixel motion
of individual objects in the scene. In the former case either
multiple still cameras or one still camera which changes its
position are used. The motion vectors di,k in this case are
constant for the whole frame but they typically represent more
complicated motions than simple translation, such as rotation
(e.g., [5]). In the latter case, one video camera is typically
used, which might move as well resulting in global shifts
amongst frames, but the additional information about the frame
to be super-resolved is provided by the motion of objects, as is
depicted in the neighboring frames. This is the case of video
SR considered in this paper, in which case the motion vectors
di,k in Equation (2) depend on the pixel location. In designing
video SR algorithms, the degradation matrix B is either
considered known or is estimated from the data, along with
the motion vectors di,k , the original HR frames, and the noise
level, either simultaneously [6]–[9], or sequentially [10], [11].
Recently, Hung et al. [12] proposed a method based on
codebooks derived from key-frames and achieved good SR
performance on compressed videos. Zhou et al. [13] proposed
to retrieve high-frequency details from complementary multi-
frames by non-uniform interpolation, depending on registered
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Fig. 1. Degradation and SR model. The original HR video frames are related to each other by motion fields. The HR sequence is then degraded to generate
the observed sequence according to Equation (1). Our proposed dictionary based video SR algorithm estimates the HR sequence, as well as the motion field.

LR frames with sub-pixel accuracy. They further improved
the SR performance in [14] when the number of LR inputs
is small by taking advantage of nonlocal self-similarity to fit
local surfaces. Liu and Sun [6], [15] proposed to estimate the
blur kernel, noise level, motion field and HR frames jointly
by Maximum-a-Posteriori (MAP) inference. Ma et al. [16]
presented an algorithm that extended the same idea to handle
motion blur. Liao et al. [17] proposed to apply a traditional
multi-frame SR method [18] to obtain SR drafts with different
motion estimation parameters, and then to combine the SR
drafts through a deep convolutional neural network (CNN).

Another class of SR approaches is represented by single
frame SR, where a single observation is used to increase the
resolution of one frame. Due to the limited LR information,
example-based or learning approaches, such as dictionary
learning (DL) approaches [19]–[24], showed recently promis-
ing single frame SR performance. These methods learn the
non-linear mapping from an LR frame to the corresponding
HR frame through an HR/LR training data set in the training
phase and apply the learned non-linear mapping to an LR
observation in the testing phase. DL approaches have also
been utilized for deblurring [25] and denoising of images and
image sequences [26], [27]. For the SR of a still image using
dictionary techniques, typically only one observation of an
LR image is utilized. The mapping from an LR to an HR
image, as depicted by Equation (1) is learned during training
and is captured by the structures of two coupled, LR and HR,
dictionaries. No explicit use of the degradation matrix B is
made during the sparse coding based reconstruction of the HR
frame. Some methods [19], [20], [22], [23] might include a
back-projection step, thus using matrix B , as a final refinement
step. However, based on our knowledge, the first work reported
in the literature on the application of DL to video SR is the
work in [21]. According to it, block-based motion estimation
is performed among input LR keyframes and DL is only
applied for single-frame SR when the motion compensa-
tion error is larger than a threshold. The approach reported
in [21] however does not provide sub-pixel precision in motion
estimation and does not utilize any of the advanced DL
techniques. Later the work in [28] utilized the semi-coupled

DL technique [24] to super-resolve each LR frame individu-
ally and performed a weighted fusion of the super-resolved
HR frames by nonlocal similarity match [29]. However, the
nonlocal similarity match is also block-based and do not fully
exploit the sub-pixel shift information. Also the initial HR
frames estimation by the semi-coupled DL and patch similarity
match are performed sequentially, so the reconstruction error
by the semi-coupled DL SR will not be minimized in the later
SR steps.

In this paper, we propose an approach for video SR,
according to which multiple LR observations of an HR video
frame are utilized according to Equation (2) for both designing
coupled dictionaries connecting the sparse representation of
LR and HR image frames, as well as for reconstructing an HR
frame. We borrow two ideas from single frame SR, namely,
bilevel coupled dictionary [19], [20], [22], [23] and multiple-
dictionaries [24], [30], to be explained later. We incorporate
them into a multiple frame SR framework, according to which
the non-redundant information contained in LR frames which
are typically related by sub-pixel shifts among them is utilized
to generate an HR frame. We propose a multiple dictionary
multiple frame video SR algorithm utilizing sub-pixel accu-
rate motion estimation. With our proposed SR approach, the
estimated optical flow is utilized to obtain multiple frame high
accuracy registration and an HR frame is reconstructed from
multiple LR frames. The moving parts in a scene can be
super-resolved by the sub-pixel shift information while for
the stationary parts, the SNR improves due to the multiple
observation of the same scene. As far as registration error is
concerned, we address it by adapting the weight parameter
that enforces the similarity of multiple LR observations, so
that our proposed algorithm has the ability to move between
single frame bilevel coupled dictionary [22], [23] SR approach
and multi-frame SR approach, and perform at least as good as
any of these two approaches.

The multiple frame SR performance is further improved by
training dictionaries from consecutive video frames. Most dic-
tionary learning techniques [19]–[21], [24]–[27], [31], [32] use
still images or individual video frames to train the dictionaries.
However, this causes an inconsistency in multiple frame SR
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since we are super-resolving videos while the dictionaries are
trained from still images. The proposed training from videos
incorporates temporal information into the dictionaries, and
makes the training and testing phases consistent. Although
as a result the training phase becomes more complicated, the
testing phase remains the same.

Because our proposed SR method is a learning method, we
do not explicitly model and estimate the blur kernel (matrix
B in Equation (2)) in the sparse coding reconstruction of the
HR frame in the SR testing phase. Clearly, in the training
phase, the HR and LR patch pairs carry the blur information
which will be incorporated into the resulting trained HR and
LR dictionary pairs. To handle the potential mismatch of the
blur kernel in training and testing phase, an idea similar to the
one in [25] can be applied. Multiple blurred and downsampled
versions of the same HR video will be used to train LH/HR
dictionary pairs (assume there are N such pairs). All such
dictionary pairs will then be used to reconstruct N HR videos
from one LR observation during testing. A decision criterion
can be adopted to decide which reconstruction is the preferred
one. For example, from the N HR reconstructions N LR obser-
vations can be generated using the N different blur kernels. All
these N LR generated observations will be compared against
the actual observation and the one with the smallest error (say
the kth one) will determined which HR reconstruction (the kth

one) will be chosen. This way a blur identification is indirectly
performed.

Based on the results reported in the literature [1], [2],
the quality of the multiple-frame SR critically depends on
the accuracy of the motion estimates. The two important
characteristics of the motion field are that 1) it should have
sub-pixel accuracy and 2) it should be dense. There is a
plethora of techniques in the literature for estimating a dense
motion field [33], [34]. Optical flow techniques assume that the
optical flow is preserved over time. This information is utilized
to form the optical flow equation connecting spatial and tem-
poral gradients. More recent optical flow algorithms [35], [36]
use a variational coarse-to-fine framework to handle large
displacements.

In-depth and comprehensive experiments demonstrate that
our proposed SR framework outperforms the state-of-the-
art super resolution frameworks, such as, NE+NNLS [37],
NE+LLE [38], ANR [39], SR-CNN [40], Enhancer [41] and
Bayesian [6] on UHD (4K) sequences.

Our main contributions lie in the following three aspects:
• We extended the bilevel coupled dictionary learning based

single frame SR method [22], [23] from a single dictio-
nary to multiple dictionaries (Section II-A).

• We extended the bilevel coupled dictionary learning based
single frame SR method [22], [23] from a single frame to
multiple frames by developing two approaches: a batch
approach and a recursive approach (Section II-B II-C).

• We proposed and developed an approach for training the
dictionaries from consecutive video frames instead from
individual still images (Section III).

This paper is an extension of our previous work [42]. The
extension and additional contributions lie in the following
aspects:

• We proposed a recursive multiple frame video super-
resolution algorithm in Section II-C and the correspond-
ing algorithm for training dictionaries from videos in
Section III-B.

• We utilized an adaptive weight parameter which depends
on the mis-registration error (Equation 9).

• We introduced an iteration between motion estimation
and HR frame estimation for both the batch approach
and recursive approach.

• We illustrated a detailed algorithm for training dictionar-
ies from videos.

• We introduced multiple SR steps for large upscale factors.
• We included more comprehensive experimental results.
The rest of the paper is organized as follows. Section II

presents our proposed dictionary based multiple-frame SR
framework. Section III illustrates a novel dictionary training
strategy, that of training from videos. Section IV provides
experimental results, and finally conclusions are drawn in
Section V.

II. DICTIONARY BASED MULTIPLE-FRAME

SUPER-RESOLUTION APPROACH

Given the LR image sequence {I l
1, . . . , I l

k , . . .}, the goal of
SR is to estimate the HR sequence {I h

1 , . . . , I h
k , . . .}. Since

each frame is primarily correlated with its neighbors and to
also reduce computation, when we are super-resolving the kth

frame I h
k , only the adjacent (M + N) frames I l

k−M , . . . , I l
k+N

are used. Clearly when N = 0, causal processing is performed.
In this section, we introduce two approaches to find the

sparse representation of an LR patch yk by incorporating
motion information from the neighboring frames, namely, the
batch approach and the temporally recursive approach. The
core idea of these two approaches originates from the fact
that image registration through motion compensation provides
multiple observations of the same scene, enabling the SR
algorithm to take advantage of the details lost in the kth frame
but present in past or future frames. For simplicity the super-
resolution framework will be derived for gray-scale images;
however, it can be easily extended to handle color image.

A. Multiple Bilevel Dictionary Learning

The first task we address is the coupled learning of high and
low resolution dictionaries over a large database of training
HR images. Each HR image I h

j in the training database is
degraded by blur and noise and down-sampled, according to
Equation (1), resulting in the corresponding LR image Ĩ l

j .

Each LR image Ĩ l
j is up-sampled using bicubic interpolation

to become I l
j , so that I h

j and I l
j have the same size. In the

remaining part of the paper, when dealing with LR frames,
we refer to I l

j , which is the bicubically interpolated LR frame

Ĩ l
j . I h

j and I l
j are then divided into patches of size W × W ;

the corresponding i th patches out of L total patches are lexi-
cographically ordered to form vectors xi and yi , respectively.
In the dictionary learning phase, we aim at finding HR and LR
dictionaries Dh and Dl such that the sparse representation of
any HR patch over Dh is identical to that of the corresponding
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LR patch over Dl . In order to do so, Yang et al. [22], [23]
formulated the following bilevel optimization problem

min
Dh,Dl

L∑

i=1

∥∥∥xi − Dh zi
∥∥∥

2

2

s.t. zi = arg min
αi

∥∥∥Fyi − F Dlαi
∥∥∥

2

2
+ λ

∥∥∥αi
∥∥∥

1
∥∥∥Dh(:, k)

∥∥∥
2

≤ 1,
∥∥∥Dl (:, k)

∥∥∥
2

≤ 1, ∀k, (3)

where αi contains the sparse representation of the i th HR/LR
patch, ‖.‖2 and ‖.‖1 represent the l2 and the l1 vector norms,
respectively, λ is the regularization parameter which controls
the sparsity of the sparse coefficient ai , F is a linear operator
which extracts features of the LR patches, and

∥∥Dh(:, k)
∥∥ and∥∥Dl (:, k)

∥∥ indicate the kth column of matrices Dh and Dl ,
respectively.

In the testing phase, given an observed LR patch y, we first
solve the following LASSO problem

z = arg min
α

∥∥∥Fy − F Dlα
∥∥∥

2

2
+ λ ‖α‖1 , (4)

and then the sparse coefficient z is applied to the HR dictionary
Dh to obtain the HR patch x corresponding to y, that is,

x = Dh z. (5)

With the bilevel dictionary learning technique, in the train-
ing phase, when updating the sparse coefficient zi in the so
referred to as the lower level, the optimization is consistent
with the optimization in the testing phase (Equation (4)),
thus guaranteeing good reconstruction accuracy. Improved
SR results have been reported with this bilevel formula-
tion in [22] and [23] compared to the previous formulation
in [19] and [20]. Because of the diverse structures and textures
in images of different styles, using a general coupled dictio-
nary is often not good enough to super-resolve all variations
in image patches. Considering the fact that image patches,
according to their appearance, can be classified into different
categories (such as textures, flat regions, edges, etc.), we train
a coupled dictionary for each such category. The heuristic
clustering strategy in [24] is integrated in our framework. More
specifically, K-Means clustering is performed on sampled LR
training patches y after applying the feature filter F . Let yi

c be
the i th LR training patch belonging to cluster c, which has in
total Lc patches, and xi

c its corresponding HR training patch.
The coupled dictionary (Dl

c Dh
c ) is then trained on

{
xi

c, yi
c

}Lc

i=1
based on Equation (3).

After learning the C coupled dictionaries
{(Dl

1 Dh
1 ), . . . , (Dl

C Dh
C )}, during the testing phase, for

a sample LR patch y, the most appropriate dictionary c∗ is
determined via

c∗ = arg min
c=1...C

‖Oc − Fy‖2
2 , (6)

where Oc is the centroid of the columns of the cth LR
dictionary. Here, the Euclidean distance between the centroid
and the LR patch is used as the similarity measure. The best
dictionary pair (Dl

c∗ Dh
c∗) is then used to find the HR version

of y (denoted by x) by solving Equation (4).

Fig. 2. Batch approach (the figure is depicted for the case M = N = 1).

B. A Batch Multiple Frame Video
Super-Resolution Algorithm

A dictionary based batch multiple-frame video SR algorithm
is shown in Fig. 2 (when M = N = 1). The three consecutive
LR frames are shown in pink while the HR frame correspond-
ing to the middle LR frame is depicted in green. We want to
fill in the patch xk which is the HR version of the patch yk in
the kth frame, by combining information from patch yk , the
motion compensated patches yMC

k−M , . . . , y MC
k−1, y MC

k+1, . . . , y MC
k+N

and the pre-trained multiple coupled dictionaries (Dl
c Dh

c ).
With this approach, we alternate optimizing for the motion

field and the HR frames I h
k . In the first iteration, the motion

field is estimated based on the LR input frames
{

I l
k+ j

} j=N

j=−M
.

The optical flow method in [36] is applied to obtain the motion
field with sub-pixel accuracy. Then the motion compensated
versions of yk are computed according to the motion field

in the past and future frames, denoted by
{

y MC
k+ j

} j=N, j �=0

j=−M
.

To super-resolve yk in the kth frame, the most appropriate
LR dictionary indexed by c∗, out of the C possible choices,
is found via Equation (6). Then the best dictionary pair
(Dl

c∗ Dh
c∗) is picked to find the HR version of yk according to

min
αk ,α

MC
k+ j ,

j=−M,...,N, j �=0

∥∥∥Fyk − F Dl
c∗αk

∥∥∥
2

2

+
N∑

j=−M, j �=0

∥∥∥Fy MC
k+ j − F Dl

c∗αMC
k+ j

∥∥∥
2

2

+ λ(‖αk‖1 +
N∑

j=−M, j �=0

∥∥∥αMC
k+ j

∥∥∥
1
)

+
N∑

j=−M, j �=0

γ j

∥∥∥Dh
c∗αk − Dh

c∗αMC
k+ j

∥∥∥
2

2
(7)

xk = Dh
c∗αk, (8)

where αMC
k+ j is the sparse representation of y MC

k+ j . The first
two terms in Equation (7) ensure the fidelity to the LR
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observations (similar to Equation (4)). The middle two terms
are l1 regularizers promoting the sparse representation of the
LR patches by the LR dictionaries and the last term enforces
the similarity of the reconstructed HR patches from past
and future frames to the current frame. Only αk is used in
Equation (8) to reconstruct the HR patch in the current frame.
The regularization parameter λ is chosen experimentally, while
the choice of the γ j ’s is described below.

After the reconstruction of the HR frames
{

I h
k+ j

} j=N

j=−M
in

the first iteration, we update the motion field based on these
HR frames by applying the optical flow algorithm in [36],
since it typically results in a higher accuracy motion field than

the one resulting by using the LR frames
{

I l
k+ j

} j=N

j=−M
. We

can alternate updating the motion field and the HR frames{
I h
k+ j

} j=N

j=−M
until convergence.

An important point to be taken into account is that the
desired accuracy on motion estimation will not be reached if
images have a lot of aliasing. Notice that the mis-registration
error between yk and y MC

k+ j , i.e., e(k, k+ j) =
∥∥∥yk − y MC

k+ j

∥∥∥
2
, is

proportional to
∥∥∥Dh

c∗αk − Dh
c∗αMC

k+ j

∥∥∥
2
. Therefore, γ j in Equa-

tion (7) should be small when e(k, k + j) is relatively large,
and vice versa, in other words they are inversely proportional.
The exponential function of the mis-registration is applied here
to formalize this relationship, as in [43],

γ j = β1 · exp(−β2 · e(k, k + j)2), (9)

where β1 and β2 are adjusted experimentally. If the registra-
tion error is large, γ j will become small and the proposed
method in Equation (7) degenerates to a single frame super-
resolution method, since we weakly enforce the similarity of
the reconstructed HR patches in the temporal domain.

C. A Recursive Multiple Frame Video
Super-Resolution Algorithm

In this section, we propose a novel temporally recur-
sive algorithm for dictionary-based multiple-frame video SR.
By using information from already super-resolved frames in
the past, the recursive method provides efficient computation,
reduced storage, high quality super-resolution results and no
delay in processing.

As depicted in Figure (3), with the recursive approach,
unlike the batch approach, only past frames are used in order to
super-resolve yk . This way the algorithm is temporally causal
therefore there is no delay by waiting for future LR frames
prior to super-resolving the current one. Because neighboring
frames exhibit redundant information, using HR information
from previously super-resolved frames can improve the quality
of the current SR frame.

Given an LR patch yk in the kth frame, the most suitable
LR dictionary indexed by c∗ is first found via Equation (6).
Like the iteration estimation process of the HR frames and
motion field in the batch approach (Section II-B), in the
first iteration, the motion field is estimated by the optical
flow method in [36] with sub-pixel accuracy based on the

Fig. 3. The recursive approach, (the figure is depicted for the case N = 2).

LR frames
{

I l
k− j

} j=N

j=0
. Motion compensated versions of yk

({
y MC

k− j

} j=N

j=1

)
are then found according to the motion field.

Subsequently, their corresponding HR patches

({
x MC

k− j

} j=N

j=1

)

are determined by the motion field as well and substituted into
the following temporally recursive model

min
αk

∥∥∥Fyk − F Dl
c∗αk

∥∥∥
2

2
+ λ ‖αk‖1

+
N∑

j=1

γ j

∥∥∥Dh
c∗αk − x MC

k− j

∥∥∥
2

2
(10)

The first term in the above equation ensures the fidelity to
the data, i.e., the current LR observations, while the second
term promotes the sparsity of the solution αk . The last term
enforces the similarity between the reconstructed HR patches
of the current frame (Dh

c∗αk) and the previous reconstructed

HR patches

({
x MC

k− j

} j=N

j=1

)
. Also γ j is selected adaptively

according to Equation (9). Similarly to the batch approach, the
corresponding HR patch xk is obtained according to Equation
(8). The reconstruction error will not propagate to future
frames due to this adaptive weight. Assume that frame I h

k
has large reconstruction error in a certain region. Its motion
compensated patches to frame (k +1) will have large registra-
tion error, in which case γ j will be small and Equation (10)
will degenerate to a single frame super-resolution method. The
reconstructed frame I h

k+1 will have smaller reconstruction error
and will provide helpful HR information to reconstruct frame
(k + 2), and so on.

Similarly to the batch approach, after the reconstruction of
the HR frame I h

k in the first iteration, a more accurate motion

field can be estimated based on the HR frames
{

I h
k− j

} j=N

j=0
by

applying the optical flow algorithm in [36]. The motion field

and the HR frames
{

I h
k− j

} j=N

j=0
are updated in an alternate

fashion until convergence.
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Fig. 4. Batch approach: training from consecutive frames when M = N = 1.

Unlike the batch approach, with the use of motion com-

pensated HR patches

({
x MC

k− j

} j=N

j=1

)
from the super-resolved

previous HR frames, only the coefficients αk of the patches
in the current frame are estimated, which significantly reduces
both storage and computation.

III. TRAINING DICTIONARIES FROM VIDEOS

Typically, for the dictionary learning process, all train-
ing patches are sampled from still images or individual
video frames. This causes some inconsistency in train-
ing and testing, since clearly we are trying to super-
resolve videos while the dictionaries are trained from still
images. Also the optimizations for training (Equation (3))
and testing (Equation (7) or Equation (10)) are not
consistent.

We therefore propose two new dictionary training algo-
rithms based on consecutive video frames and motion esti-
mation for both the batch and recursive approaches. Both
algorithms are applied to each cluster (Section II-A) separately,

so in the following equation we omit the dependency on a
particular cluster for simplifying the notation.

A. Video Training for the Batch Approach

As shown in Figure (4), during training, a number of
consecutive video frames from the training videos are used.
In the kth training video sequence of total Ls video sequences,

the original HR frames,
{

I h
k+ j

} j=N

j=−M
, are degraded to obtain

the LR frames
{

I l
k+ j

} j=N

j=−M
. Motion estimation is then

performed utilizing the (M + N + 1) frames to find the

corresponding patches
{

y MC
k+ j

} j=N, j �=0

j=−M

({
x MC

k+ j

} j=N, j �=0

j=−M

)
of

yk (xk) in the past and future frames. Let L p be the number
of sampled patches in each scene. The coupled dictionary
(Dl Dh) for the batch multiple-frame video SR approach is

then trained on

{{
xi

k, yi
k,

{
yi MC

k+ j

} j=N, j �=0

j=−M

}i=L p

i=1

}k=Ls

k=1
according to the bilevel dictionary learning in
Equation (11), as shown at the bottom of this page,
above.

The objective function in Equation (11) is highly nonlinear
and nonconvex. Similarly to [22] and [23], we alternate

optimizations over Dh , Dl and

(
zi

k

{
zi MC

k+ j

} j=N, j �=0

j=−M

)
while

keeping the remaining of the terms fixed. When Dh and Dl are

fixed, the optimization over

(
zi

k

{
zi MC

k+ j

} j=N, j �=0

j=−M

)
becomes

a standard LASSO problem as reformulated in Equation (12),
as shown at the bottom of this page.

min
Dh,Dl

Ls∑

k=1

L p∑

i=1

∥∥∥xi
k − Dh zi

k

∥∥∥
2

2

s.t. zi
k, zi MC

k+ j
j=−M,...,N, j �=0

= arg min
αi

k ,α
i MC
k+ j ,

j=−M,...,N, j �=0

∥∥∥Fyi
k − F Dlαi

k

∥∥∥
2

2
+

N∑

j=−M, j �=0

∥∥∥Fyi MC
k+ j − F Dlαi MC

k+ j

∥∥∥
2

2

+ λ(
∥∥∥αi

k

∥∥∥
1
+

N∑

j=−M, j �=0

∥∥∥αi MC
k+ j

∥∥∥
1
) +

N∑

j=−M, j �=0

γ j

∥∥∥Dhαi
k − Dhαi MC

k+ j

∥∥∥
2

2

∥∥∥Dh(:, k)
∥∥∥

2
≤ 1,

∥∥∥Dl(:, k)
∥∥∥

2
≤ 1, ∀k (11)

min
zi MC

k−M ,··· ,zi
k ,··· ,zi MC

k+N

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F Dl

. . .

F Dl

. . .

F Dl

−γ−M Dh γ−M Dh

. . .
...

. . .

γN Dh −γN Dh

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

zi MC
k−M
...

zi
k
...

zi MC
k+N

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fyi MC
k−M
...

Fyi
k

...

Fyi MC
k+N
0
...
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

zi MC
k−M
...

zi
k
...

zi MC
k+N

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥
1

(12)
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When

(
zi

k

{
zi MC

k+ j

} j=N, j �=0

j=−M

)
and Dh are fixed, the opti-

mization over Dl is reduced to

min
Dl

Ls∑

k=1

L p∑

i=1

( ∥∥∥Fyi
k − F Dl zi

k

∥∥∥
2

2

+
N∑

j=−M, j �=0

∥∥∥yi MC
k+ j − F Dl zi MC

k+ j

∥∥∥
2

2

)

s.t.
∥∥∥Dl (:, k)

∥∥∥
2

≤ 1, ∀k, (13)

which is a quadratically constrained quadratic
program (QCQP) [44] that can be efficiently optimized
using conjugate gradient descent [45]. The l2 norm constraint
can be satisfied by simply projecting each column onto the
unit ball at each iteration according to Equation (14), that is,

Dl (:, k) = Dl(:, k)

max
(
1,

∥∥Dl (:, k)
∥∥

2

) . (14)

Finally, when we fix

(
zi

k

{
zi MC

k+ j

} j=N, j �=0

j=−M

)
and Dl , by

collecting terms containing Dh in both upper and lower levels,
the optimization over Dh becomes

min
Dh

Ls∑

k=1

L p∑

i=1

( ∥∥∥xi
k − Dh zi

k

∥∥∥
2

2

+
N∑

j=−M, j �=0

γ j

∥∥∥Dh(zi
k − zi MC

k+ j )
∥∥∥

2

2

)

s.t.
∥∥∥Dh(:, k)

∥∥∥
2

≤ 1, ∀k, (15)

which is also a QCQP [44] and can be optimized by conjugate
gradient descent [45]. The projection to the unit ball becomes

Dh(:, k) = Dh(:, k)

max
(
1,

∥∥Dh(:, k)
∥∥

2

) . (16)

Algorithm 1 summarizes the complete procedure of our
coupled dictionary learning algorithm for sequential video
training.

Notice that the lower level optimization of Equation (11) in
the training phase is consistent with the optimization in the
testing phase of multiple-frame sequential SR in Equation (7).
Therefore the training and testing phases are consistent and
the accuracy in sequentially reconstructing one frame from
multiple frames is guaranteed.

To train multiple dictionaries, Algorithm 1 is applied
to each cluster separately. Feature filter F is applied
on the LR patch yi

k to cluster each training patch set{
xi

k, yi
k,

{
yi MC

k+ j

} j=N, j �=0

j=−M

}
.

B. Video Training for the Recursive Approach

Similarly to Section III-A, a number of consecutive video
frames are used in the training phase, as depicted in Figure (5).

The original HR frames
{

I h
k− j

} j=N

j=0
, are degraded to obtain the

Algorithm 1 Coupled Dictionary Learning: Training From
Video for Batch Approach

Fig. 5. Recursive approach: training from consecutive frames when N = 2.

LR frames
{

I l
k− j

} j=N

j=0
. The backwards corresponding patches

{
yi MC

k− j

} j=N

j=1

({
xi MC

k− j

} j=N

j=1

)
to yi

k

(
xi

k

)
are obtained by

motion estimation, performed on the LR frames. Let yi
k be

the i th LR training patch, xi
k the corresponding HR training

patch to (yi
k) and xi MC

k− j the motion compensated patch of xi
k

in the (k− j)th HR frame. We then train the coupled dictionary
(Dl Dh) for the recursive multiple-frame approach based on{{

yi
k,

{
xi MC

k− j

} j=N

j=1
, xi

k

}i=L p

i=1

}k=Ls

k=1

by the following bilevel

optimization

min
Dh,Dl

Ls∑

k=1

L p∑

i=1

∥∥∥xi
k − Dh zi

k

∥∥∥
2

2

s.t. zi
k = arg min

αi
k

∥∥∥Fyi
k − F Dl zi

k

∥∥∥
2

2
+ λ

∥∥∥zi
k

∥∥∥
1

+
N∑

j=1

γ j

∥∥∥xi MC
k−i − Dh zi

k

∥∥∥
2

2

∥∥∥Dh(:, k)
∥∥∥

2
≤ 1,

∥∥∥Dl (:, k)
∥∥∥

2
≤ 1, ∀k. (17)
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Algorithm 2 Coupled Dictionary Learning: Train From Video
for Recursive Approach

The optimization strategy from Section III-A can be applied
here by alternating optimization over Dl , zi

k , and Dl . When
Dh and Dl are fixed, optimizing over zi

k is a standard LASSO
problem

min
zi

k

∥∥∥∥∥∥∥∥∥∥∥

⎡

⎢⎢⎢⎢⎢⎣

Fyi
k

γ1xi MC
k−1
...

γN xi MC
k−N

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎣

F Dl

γ1 Dh

...

γN Dh

⎤

⎥⎥⎥⎥⎥⎦
zi

k

∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ
∥∥∥zi

k

∥∥∥
1
. (18)

In the next step, by fixing Dh and zi
k , the optimization over

Dl is reduced to

min
Dl

Ls∑

k=1

L p∑

i=1

∥∥∥Fyi
k − F Dl zi

k

∥∥∥
2

2

s.t.
∥∥∥Dl (:, k)

∥∥∥
2

≤ 1, ∀k, (19)

which can be carried out by conjugate gradient descent [45]
followed by projection onto the unit ball (Equation (14)).

Finally, the optimization over Dh is carried out by fixing
Dl and zi

k , and solving the following QCQP problem

min
Dh

Ls∑

k=1

L p∑

i=1

( ∥∥∥xi
k − Dh zi

k

∥∥∥
2

2
+

N∑

j=1

γ j

∥∥∥xi MC
k− j − Dh zi

k

∥∥∥
2

2

)

s.t.
∥∥∥Dh(:, k)

∥∥∥
2

≤ 1, ∀k, (20)

and then projecting onto the unit ball (Equation (14)).
The iterative procedure of the coupled dictionary learning

algorithm for recursive video training is summarized in Algo-
rithm 2.

Algorithm 2 can be applied on each cluster separately
to train multiple dictionaries. Feature filter F on the LR

patch yi
k is utilized to cluster each training patch set{

yi
k,

{
xi MC

k− j

} j=N

j=1
, xi

k

}
.

IV. EXPERIMENTAL RESULTS

Our two proposed algorithms extend the bilevel dictio-
nary learning [22], [23] in two aspects: from single dic-
tionary to multiple dictionaries and from single frame to
multiple frames. We first show that each extension is ben-
eficial by comparing the SR performances of single dictio-
nary single frame SR (Bilevel), multiple dictionaries single
frame SR (MDSF), single dictionary multiple frames SR
(SDMF-B for the batch approach, SDMF-R for the recursive
approach), multiple dictionary multiple frames SR (MDMF-B
for the batch approach, MDMF-R for the recursive approach)
and MDMF-B/MDMF-R with the proposed video training
(MDMF-B-VT/MDMF-R-VT). We also compare the perfor-
mance of the proposed algorithm with state-of-the-art video
SR algorithms, such as Enhancer [41], Bayesian [6], Bayesian-
MB [16] and DraftCNN [17].

A. Implementation Details

We performed an extensive set of experiments utilizing
frames of a 4K video database [46]. There is a high demand
of upscaling videos of low resolutions to 4K resolution
(2160×3840) these days due the proliferation of 4K monitors.
Upscaling of 1080P (1080 × 1920) or 540P (540 × 960)
resolution to 4K videos is a representative example used in this
paper, resulting in an upscale factor of 2 and 4, respectively. In
detail, for upscale factor 2, there are in total 57 scenes in the
4K video database [46]. LR (1080 ×1920) frames result from
the degradation of the original HR (2160×3840) frames by the
Matlab function “imresize”, which is experimentally found to
represent a Gaussian blur kernel with variance approximately
equal to 0.4, thus specifying the B matrix in Equation (1).
50 scenes are used for training and 7 for testing. In the
training phase of these experiments, 800,000 patch sets are
sampled from the center frame and the motion compensated
neighboring frames for training the dictionary from videos,
while the same 800,000 patches in center frames are used
for training the dictionary from images. The patch size is
5 × 5 and no feature filter F is applied to the LR patches.
The reason for not doing so is that we verified experimentally
that by using for example four high-pass filters, as was done
in [22] and [23], does not provide any sizeable advantage.
In addition, four high-pass filter will increase the dimension
of the LR dictionary atoms by a factor of four, thus increasing
considerably the required computation. λ is chosen to be 0.02
by a parameter traversing experiment, as shown in Figure (6).
β1 and β2 are chosen to be equal to 0.2 and 1

3×max(e(k,k+ j ))
according to the convexity criteria in [43], respectively. Every
dictionary for the SDSF, SDMF-B, and SDMF-R approaches
has 512 atoms and the dictionary for the MDSF, MDMF-B and
MDMF-R approaches has 8 subdictionaries with 512 atoms
each. For the multiple-dictionary methods in the testing phase,
we solve the LASSO problem with only one sub-dictionary
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TABLE I

PSNR VALUES (IN dB) OF THE SR FRAME FOR VARIOUS METHODS AND TEST SCENES (BEST RESULTS ARE SHOWN IN BOLD)

Fig. 6. λ is traversed to find its optimal value. For each tested λ, we
perform the multiple frame SR according to Equation (7) and compute its
corresponding PSNR value.

and the computation for assigning patches to each cluster
(Equation (6)) is negligible, therefore the comparison is fair.

In the testing phase of upscale factor 2, 6 consecutive video
frames are super-resolved by each method. 5 × 5 patches are
extracted with overlap of 4 pixels between adjacent patches.
The multiple estimates of the same pixel from different
overlapping patches are averaged to obtain the final result. For
those multiple-frame batch SR methods, the current LR frame,
together with one LR backward and one LR forward frames
(i.e., M = N = 1), are utilized to estimate the current frame.
For those multiple-frame recursive SR methods, the current
LR frame, together with two LR/HR super-resolved backward
frames (i.e., N = 2) are used to estimate the current frame.
We tested a number of optical flow estimation algorithm [34].
Based on their comparison we are using the method in [36]
in all reported experiments.

For an upscale scale factor of 4, similarly to [23], we found
experimentally that utilizing the trained coupled dictionaries
for an upscale factor of 2 and upscaling the frames twice with
an upscale factor of 2 in each step provides better SR results
than training and testing directly with an upscale factor of 4.

For color video frames, we apply our video SR algorithm to
the luminance channel only, since humans are more sensitive
to illumination changes. The color layers (Cb, Cr) are upscaled
using bicubic interpolation. The results of the various methods
are evaluated in terms of PSNR (peak signal-to-noise ratio) and
SSIM [47] on the luminance channel.

B. Effect of the Proposed Extensions

Our two proposed methods are based on the bilevel dic-
tionary learning [22], [23], which is a single dictionary single
frame SR method. Since our methods extend it to use multiple
dictionaries and multiple frames, we perform a controlled
experiment for each extension here to show that the proposed
extensions are effective. All multiple-frame SR methods utilize

Fig. 7. Atoms of LR/HR dictionary pairs trained by three different dictionary
learning algorithms. Each 5 × 5 atom is upscaled by a factor of 6 by bicubic
interpolation for better visualization. (a) Dl . (b) Dh . (c) Dl . (d) Dh . (e) Dl .
(f) Dh .

Fig. 8. The iteration process of the batch approach. The normalized error∥∥∥I h
p+1 − I h

p

∥∥∥
2

F
/
∥∥∥I h

p+1

∥∥∥
2

F
of Scenes 25 and Scene 48 as a function of iteration

is shown in the left image and the corresponding PSNR values are shown in
the right image.

one iteration in updating the motion field and HR frames, since
the effect of iteratively updating motion fields and HR frames
will be discussed in Section IV-C.

Table I shows the peak signal-to-noise ratio (PSNR) of
the SR frames in dB (the dB values are averaged over 6
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TABLE II

PSNR VALUES (IN dB) OF THE SR FRAME FOR VARIOUS METHODS, ITERATIONS AND SCENES

Fig. 9. Reconstruction error maps of a cropped region in scene 48, with different iteration number.

testing frames) for various algorithms and test sequences.
The best results are shown in bold. From these experiments
it is concluded that DL based multiple-frame SR methods
(SDMF-B, SDMF-R, MDMF-B, MDMF-R) outperform
single frame SR (Bilevel, MDSF). We can also see that
multiple-dictionary SR methods perform better than single-
dictionary SR methods, by comparing results of SDMF-B with
MDMF-B and SDMF-R with MDMF-R. Finally, the proposed
training dictionaries from video algorithms (Algorithm 1
and Algorithm 2), MDMF-B-VT and MDMF-R-VT,
further improve the SR results over MDMF-B and
MDMF-R.

We show in Figure (7) LR and HR dictionary atoms
resulting from the various dictionary training approaches we
have considered. 18 atoms from the Dl dictionary and the
corresponding atoms in the Dh dictionary trained according to
Equation (3) are shown respectively in Figure (7a) and (7b).
The same 18 LR/HR atom pairs resulting from Algorithm 1
and Algorithm 2 are shown respectively in Figures (7c), (7d)
and (7e), (7f). Notice that dictionaries Dl and Dh trained
from Equation (3) is the initializations of Dl and Dh

for Algorithms 1 and 2. As shown in Figure (7), sharper
HR atoms result in general from our proposed training
Algorithms 1 and 2 (compare Figure (7b), (7d) and (7f)).
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TABLE III

PSNR VALUES (IN dB, TOP) AND SSIM VALUES (BOTTOM) OF EXPERIMENTAL RESULTS COMPARING OUR PROPOSED METHODS WITH
THE STATE-OF-THE-ART METHODS FOR UPSCALE FACTOR 2 (BEST RESULTS ARE SHOWN IN BOLD)

TABLE IV

PSNR VALUES (IN dB, TOP) AND SSIM VALUES (BOTTOM) OF EXPERIMENTAL RESULTS COMPARING OUR PROPOSED METHODS
WITH THE STATE-OF-THE-ART METHODS FOR UPSCALE FACTOR 4 (BEST RESULTS ARE SHOWN IN BOLD)

In conclusion, our proposed multiple frames SR,
utilizing multiple dictionaries and training dictionaries
from videos are effective individually and their

benefits in SR are cummulative, as the proposed
MDMF-B-VT and MDMF-R-VT algorithms provide best
SR results.
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Fig. 10. Visual Comparison of SR results. Column left to right is scene 8, scene 25, scene 33 and scene 48, respectively. Row top to bottom is Bicubic,
Bilevel [22], [23], Enhancer [41], Bayesian [6], proposed MDMF-B-VT and proposed MDMF-R-VT, respectively. Our proposed algorithms can generate
natural-looking frames without noticeable visual artifacts. Because the testing frames have high resolution, results are better viewed in zoomed PDF.

C. Effect of Iteration

The proposed batch approach (Section II-B) and recur-
sive approach (Section III-B) by alternating optimizations

update the motion fields and reconstructed HR frames I h .
To demonstrate the convergence of the iteration process,

we calculate the normalized error
∥∥∥I h

p+1 − I h
p

∥∥∥
2

F
/
∥∥∥I h

p+1

∥∥∥
2

F
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Fig. 11. Visual Comparison of SR results of different SR methods when Gaussian noise variance equals to 0.001. Our proposed algorithms suppress the
noise and generate the closest HR frames to the Ground Truth HR frames. Readers are suggested to zoom in to see the details.

(I h
p is the reconstructed HR frame at the pth iteration) at each

iteration. This normalized error is shown in Figure (8) (left) for
the batch approach (MDMF-B-VT) for two of the experiments,
and the corresponding PSNR is in Figure (8) (right). As shown
in Figure (8), the iteration process converges fast. Similar
results are also observed with the recursive approach. In all
experiments, we terminate the iteration when the normalized
error is below the threshold of 5 × 10−7.

We visualize the reconstruction error maps of a cropped
region of the 6th frame in scene 48 in Figure (9), which has a
global panning motion of the background with the local motion
of the foreground. From the heat maps, the reconstruction error
in the background texture region decreases as the iteration
progresses, also the error in the handle in the foreground
almost disappears at the final result.

More interestingly, as shown in Table II, we observe that
although the batch SR algorithm outperforms the recursive SR
algorithm at iteration 1, their performance is comparable in
the final iteration, illustrating that the batch approach is more
robust to errors in motion estimation and that both approaches
have similar performance when motion estimation is precise.

D. Comparison With State-of-the-Art Results
In the previous Sections IV-B and IV-C, we show that

our extensions of single frame bilevel SR methods [22], [23]
are effective and the iterative updates of the motion field
and HR frames improve the SR performance. Here we com-
pare our proposed methods, MDMF-B-VT and MDMF-R-VT,
with other state-of-the-art methods, including Bayesian [6]
and a commercial software Enhancer [41], and six single
frame SR methods including Bicubic, Bilevel [22], [23],
NE+NNLS [37], NE+LLE [38], ANR [39] and SR-CNN [40].
Two more state-of-the-art methods [16], [17] will be compared
in Section IV-E with smaller spatial resolution because their
implementation is extremely slow on 4K resolution.

According to Table III and Table IV, our proposed
approaches (MDMF-B-VT and MDMF-R-VT) provide the
best SR performance compared to all other methods for
both upscale factors of 2 and 4, demonstrating the effec-
tiveness of the proposed algorithms. Although the Bayesian
SR method [6] evaluates the blur kernel, noise level and
super-resolved frames simultaneously, it requires the motion
compensation of 30 consecutive frames in the backward and
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Fig. 12. Visual Comparison of the motion compensation error of the SR results by different SR methods when Gaussian noise variance equals to 0.001. Our
proposed algorithms have the smallest motion compensation error from both the error head map and RMSE metric, illustrating the advantages in temporal
smoothness of the super-resolved frames.

forward directions, which is computationally infeasible with
4K videos because of the memory and computational limita-
tions. When we drop the consecutive frames from 30 to 3, the
SR performance of [6] is not as good as ours. In Figure (10),
we compare the visual quality of our upscaled images with the
result produced by several recent state-of-the-art SR methods.
We notice that all these SR methods produce sharper images
than bicubic interpolation, however artifacts are introduced.
Next we notice that our proposed method has fewer artifacts
and shaper edges compared to all other methods.

E. Robustness to Noise

In this section, we evaluate the noise robustness of different
SR algorithms by adding Gaussian noise to the LR input
frames. The center regions (480 × 640) of the original 4K
frames are utilized as the HR ground truth, in order to compare

with two more state-of-the-art video SR methods, Bayesian-
MB [16] and DraftCNN [17]. The LR input frames (240×320)
are obtained by spatially downsampling the HR frames by a
factor of 2 and adding white Gaussian noise with variance
0.001. Different SR methods are applied to increase the spatial
resolution by a factor of 2. We also show the experimental
results with no additional Gaussian noise (noise variance 0).

As shown in Table V, the SR performance of all methods is
reduced when noise is added, as expected. The HR dictionaries
for the dictionary learning based methods, Bilevel [22], [23],
MDMF-B-VT and MDMF-R-VT, are trained with noise free
HR frames, so the reconstructed HR frames naturally contain
less noise. The sparse coding problem in SR testing phase
is also proven to be robust to noise [48], so better SR
performance is obtained by the dictionary learning based meth-
ods (Bilevel [22], [23], MDMF-B-VT and MDMF-R-VT).
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TABLE V

PSNR VALUES (IN dB, TOP) AND SSIM VALUES (BOTTOM) OF EXPERIMENTAL RESULTS COMPARING OUR PROPOSED METHODS
WITH THE STATE-OF-THE-ART METHODS (BEST RESULTS ARE SHOWN IN BOLD) UNDER DIFFERENT NOISE CONDITIONS

By comparing the SR results of Bilevel [22], [23] with
MDMF-B-VT and MDMF-R-VT, we found out that better SR
performance is obtained by utilizing multiple LR noisy input
frames. The proposed MDMF-B-VT consistently outperforms
MDMF-R-VT, since it estimates the sparse coefficients of
3 noisy LR patches simultaneously.

The average computation time for all SR algorithms to
super-resolve 1 frame is also shown in Table V. All exper-
iments except Enhancer and Bayesian-MB are performed on a
Linux workstation with an Intel Xeon E5-2630 processor with
2.4GHz and 64 GB RAM. The Enhancer and the Bayesian-
MB algorithm were only available for the Windows operating
system and were tested on a different workstation with Intel
i7-6820 processor with 2.70GHz and 16 GB RAM. Notice
that our proposed methods MDMF-B-VT and MDMF-R-VT
can be sped up by a factor of 4 approximately if we only
apply 1 iteration instead of 4 iterations. For MDMF-B-VT,
the motion estimation takes 21.5s and the sparse coefficients
inference of Equation (7) takes 14.4s on average for one
iteration. For MDMF-R-VT, the motion estimation takes 22.1s
and the sparse coefficients inference of Equation (10) takes
9.1s on average for one iteration. So our proposed methods

can be further sped up by utilizing faster motion estimation
methods and sparse coefficients inference algorithms.

We visually compare the SR results of our proposed
methods with several other state-of-the-art SR methods,
when white Gaussian noise with variance 0.001 is added to
the LR input frames. We notice that the dictionary learn-
ing based methods, Bilevel [22], [23], MDMF-B-VT and
MDMF-R-VT, outperform others in suppressing the noise. The
proposed MDMF-B-VT algorithm provides the sharpest HR
frame with few artifacts.

The temporal continuity between adjacent super-resolved
HR frames is compared in Figure (12) by visualizing the
motion compensation error of two adjacent super-resolved HR
frames by different SR algorithms. The optical flow estimation
method in [36] is applied to estimate the motion field between
two adjacent super-resolved HR frames, and the second frame
is warped to the first one according to the computed motion
field. The difference between the first frame and the warped
second frame is visualized to compare the temporal smooth-
ness of different SR algorithms. The main idea behind this
is that if two adjacent super-resolved frames are temporally
smooth, then an accurate motion field can be estimated and
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the resulting motion compensated difference will be small.
In quantifying this difference we compute the RMSE (Root-
Mean-Square Error). The smoothness of the motion field is
of course also indicative of the temporal continuity between
adjacent frames. One can imagine situations where the RMSE
of the displaced frame difference is small but the motion
field exhibits large variations. We therefore also compute the
Total Variation (TV) of the estimated motion field vectors, in
both the horizontal (VxTV) and vertical (VyTV) directions.
In comparing the temporal smoothness of video frames, both
the RMSE of the displaced frame difference and the TV of
the motion field should be taken into account; the smaller
such measures the higher the temporal smoothness. As shown
in Figure (12), our proposed MDMF-B-VT method produces
the smallest RMSE on the motion compensation error, as well
as the smallest TV on the motion vector, demonstrating that it
better explores the spatio-temporal correlation of consecutive
frames. Notice that our proposed MDMF-R-VT method pro-
duces the second smallest RMSE on the motion compensation
error while have larger TV on the motion vector compared
to Bilevel [22], [23], so its temporal smoothness is similar
to Bilevel [22], [23]. However, its SR performance is still
2.3 dB better than Bilevel [22], [23] on average according
to Table V. It is also interesting to point out that according to
Table V, the single frame SR method SRCNN [40] outperforms
the multiple frame SR method Enhancer [41] in terms of
the averaged single frame PSNR and SSIM metrics, while
Enhancer [41] has smaller motion compensation error of
adjacent frames according to Figure (12), illustrating that
multiple frame SR methods provide an advantage in terms
of the temporal smoothness of the super-resolved HR frames.

V. CONCLUSION

In this paper we presented two novel video SR frameworks,
the batch approach and the recursive approach, based on
dictionary learning and motion estimation. According to them,
the HR patches are estimated from multiple corresponding LR
patches or previously super-resolved HR patches in multiple
frames, making the dictionary-based reconstruction algorithm
more accurate. The dictionary training algorithms that utilize
multiple frames of the training videos further improved the SR
performance by making the training and testing phases consis-
tent. We performed experiments with 4K videos and showed
that our methods outperform the state-of-the-art algorithms,
based either on quantitative analysis or visual comparison.
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