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ABSTRACT
Convolutional neural networks (CNN) have been successfully ap-
plied to image super-resolution (SR) as well as other image restora-
tion tasks. In this paper, we consider the problem of compressed
video super-resolution. Traditional SR algorithms for compressed
videos rely on information from the encoder such as frame type or
quantizer step, whereas our algorithm only requires the compressed
low resolution frames to reconstruct the high resolution video. We
propose a CNN that is trained on both the spatial and the temporal
dimensions of compressed videos to enhance their spatial resolu-
tion. Consecutive frames are motion compensated and used as input
to a CNN that provides super-resolved video frames as output. Our
network is pretrained with images, which significantly improves the
performance over random initialization. In extensive experimental
evaluations, we trained the state-of-the-art image and video super-
resolution algorithms on compressed videos and compared their per-
formance to our proposed method.

Index Terms— Deep Learning, Convolutional Neural Net-
works, Super-Resolution, Video Compression

1. INTRODUCTION

Image and video or multiframe super-resolution is the process of es-
timating a high resolution version of a low resolution image or video
sequence. It has been studied for a long time, but has become more
prevalent with the new generation of Ultra High Definition (UHD)
TVs. Most video content was not recorded in UHD resolution, there-
fore SR algorithms are needed to generate UHD content from Full
HD (FHD) or lower resolutions.

SR algorithms can be divided into two categories, model-based
and learning-based algorithms. Model-based approaches [1–4]
model the Low Resolution (LR) image as a blurred, subsampled
version of the High Resolution (HR) image with additive noise. The
reconstruction of the HR image from the LR image is an ill-posed
problem and therefore needs to be regularized. In a Bayesian frame-
work, priors controlling the smoothness or the total variation of the
image are introduced in order to obtain the reconstructed HR image.
Learning-based algorithms learn representations (i.e. dictionaries)
from large training databases of HR and LR image pairs [5, 6] or
exploit self-similarities within an image [6, 7]. Dictionary based
approaches utilize the assumption that natural image patches can be
represented as a linear combination of learned dictionary patches
or atoms. Yang et al. [5] were among the first to use two coupled
dictionaries to learn a nonlinear mapping between the LR and the
HR images.

In [8, 9], super-resolution has been applied to compressed video
streams. Fully resolved keyframes are embedded into the video

stream and utilized to enhance the remaining frames. The authors
of [3, 10, 11] introduced methods that do not require keyframes.
Their methods model the quantization error and use a Bayesian ap-
proach to reconstruct the high resolution frames. In the proposed
method, the quantization error is incorporated in the training pro-
cess, as we train the CNN on compressed frames.

Inspired by the recent successes achieved with CNNs [12,13], a
new generation of image SR algorithms based on deep neural nets
emerged [14–19], with very promising performances. The train-
ing of CNNs can be done efficiently by parallelization using GPU-
accelerated computing. Neural networks are capable of processing
and learning from large training databases such as ImageNet [20],
while training a dictionary on a dataset this size can be challeng-
ing. Moreover, once a CNN is trained, super-resolving an image is
a purely feed-forward process, which makes CNN based algorithms
much faster than traditional approaches. In this paper, we introduce
a CNN framework for video SR.

In the classification and retrieval domains, CNNs have been suc-
cessfully trained on video data [21, 22]. Training for recovery pur-
poses remains a challenging problem because the video quality re-
quirements for the training database are high since the output of the
CNN is the actual video rather than just a label. Suitable videos for
the SR task are uncompressed, feature-rich and should be separated
by shots/scenes. We show that by pretraining the CNN with images
we can bypass the creation of a large video database. Our proposed
algorithm requires only a small video database for training to achieve
very promising performance.

In this paper we introduce a compressed video SR framework
based on CNNs. We propose a pretraining procedure whereby we
train the pretraining SR architecture on images and utilize the re-
sulting filter coefficients to initialize the training of the video SR
architectures. This improves the performance of the video SR ar-
chitecture significantly. In order to handle fast moving objects and
motion blur in videos, we apply an adaptive motion compensation
scheme.

The remainder of the paper is organised as follows. In Section 2
we explain our proposed framework. Sections 3 contains our results
and experimental evaluation and Section 4 concludes the paper.

2. PROPOSED SUPER-RESOLUTION ALGORITHM

2.1. Image Pretraining

Before we start the training of the video SR model, we pre-train the
model weights on images. For the image pretraining, we use a model
for image SR, henceforth referred to as a pretraining model, with
the network architecture parameters proposed in [15]. It has only
convolutional layers which has the advantage that the input images



can be of any size and the algorithm is not patch-based. It consists
of three convolutional layers, where the two hidden layers H1 and
H2 are followed by a Rectified Linear Unit (ReLU) [23]. The first
convolutional layer consists of 1× f1 × f1 × C1 filter coefficients,
where f1 × f1 is the kernel size and C1 the number of kernels in
the first layer. We use this notation to indicate that the first dimen-
sion is defined by the number of input images, which is 1 for the
image SR case. The filter dimensions of the second and third layers
are C1 × f2 × f2 × C2 and C2 × f3 × f3 × 1, respectively. The
last layer can only have one kernel in order to obtain an image as
output. Otherwise an additional layer with one kernel otherwise a
postprocessing or aggregation step is required. The input image is
bicubically upsampled so that the input (LR) and output (HR) im-
ages have the same resolution. This is necessary because upsam-
pling with standard convolutional layers is not possible. The model
is trained on patches extracted from images from the ImageNet de-
tection dataset [24], which consists of around 400,000 images.

2.2. Video Super-Resolution Architectures

Fig. 1: Video SR architectures: The three input frames are concate-
nated (Concat Layer) before layer 2 is applied

It has been shown for model-based approaches that including
neighboring frames into the recovery process is beneficial for video
SR [2,3]. The motion between frames is modeled and estimated dur-
ing the recovery process and additional information is gained due
to the subpixel motions among frames. The additional information
conveyed by these small frame differences can also be captured by
a learning-based approach, if multiple frames are included in the
training procedure. For the video SR architecture, we include the
neighboring frames into the process. Figure 1 shows how we incor-
porate the previous and next frames into the process. For simplicity,
we only show the architecture for three input frames, namely the
previous (Yt−1), current (Yt), and next (Yt+1) frames. Any num-
ber of past and future frames can be accomodated by adding more
branches to the architecture (for example, we use five input frames
in the experimental section). A single input frame has dimensions

1 ×M × N , where M and N are the width and height of the in-
put image, respectively. The three input frames are first processed
by layer 1 and then concatenated along the first dimension before
the second and third convolutional layers are applied. The new in-
put data for layer 2 is three times larger than in the pretraining SR
architecture. Not only the data size but also the filter dimensions are
larger for the video SR architectures. The filter coefficients of layer
2 increase to 3C1 × f2 × f2 × C2, whereas layers 1 and 3 remain
the same. In order to transfer the filter values from the pretraining
model to the video model, the kernel width, height and their number
have to be equal in both models. The filters of layers 1 and 3 have the
same dimensions and can be transferred directly from the pretraining
model. The filter dimension of the second layer are different. The
first dimension in the video model is three times larger than in the
pretraining model, as the output data from the three filters from layer
1 are concatenated along the temporal dimension. Furthermore, the
output data of layer 2 should be similar to the output data obtained
by the single frame SR, as layers 1 and 3 remain the same as in
the single frame SR. We transfer the video filter weights w(.) and
the biases b(.) from the second layer of the pretraining model to the
weights and biases from the video model wv(.) and bv(.) as

wv(m,n,t− 1, c) = wv(m,n, t, c) = wv(m,n, t+ 1, c)

=
1

3
w(m,n, t, c)

bv(c) = b(c), ∀m,n, c

(1)

which is equivalent to averaging the input images before applying
the second convolution layer.

2.3. Adaptive Motion Compensation

We tested a number of optical flow estimation algorithms [25]. Both,
accuracy of the motion estimates and speed of implementation were
taken into account. We chose Druleas algorithm [26] for our frame-
work. The algorithm uses a Combined Local-Global approach with
Total Variation (CLG-TV) and demonstrates good results even when
large displacements are present.

Motion compensation can be difficult if large motion or motion
blur occurs in the video. This can lead to undesired boundary effects
and artifacts in the HR reconstruction and will therefore reduce per-
formance. We propose the use of an adaptive motion compensation
(AMC) scheme that reduces the influence of neighboring frames for
the reconstruction in case of misregistration. Motion-compensation
is applied according to the following equation

yamc
t−T (i, j) = (1− r(i, j))yt(i, j) + r(i, j)ymc

t−T (i, j), (2)

where r(i, j) controls the convex combination between the reference
and the neighboring frame at each pixel location (i, j), yt is the cen-
ter frame, ymc

t−T is the motion compensated neighboring frame and
yamc
t−T is the neighboring frame after applying adaptive motion com-

pensation. Similarly to [27], r(i, j) is defined as

r(i, j) = exp(−ke(i, j)), (3)

where k is a constant parameter and e(i, j) is the motion compen-
sation or misregistration error. Large errors can occur due to large
motion, occlusion, blurring of the object, or due to the fact that (i, j)
is close to a motion boundary. Using the adaptive motion compensa-
tion helped improve the performance for challenging videos, as will
be shown in the experimental section.



Table 1: Average PSNR values for the Myanmar test sequences. The result of the proposed method (CVSRnet) is shown in the last column

Single Frame SR Algorithms Video SR Algorithms Own

Scale CRF Bicubic SrSC [5] A+ [6] SRCNN [15] ANN [18] Bayesian [2] Bayesian-MB [4] Enhancer [28] CVSRnet

2 0 34.59 36.36 37.19 37.79 35.18 35.56 36.41 35.94 38.48
2 20 33.55 34.82 35.14 35.07 34.06 34.38 34.73 34.25 36.06
2 30 31.64 32.04 32.32 32.42 31.82 31.96 32.07 31.84 32.81
2 40 28.39 28.38 28.49 28.80 28.38 28.35 28.38 28.40 28.95
3 0 31.59 32.71 33.48 33.88 32.55 32.20 32.74 32.50 34.42
3 20 31.02 32.07 32.46 32.52 31.72 31.07 31.77 31.59 33.14
3 30 29.64 30.08 30.35 30.55 29.90 29.47 29.82 29.89 30.82
3 40 26.90 26.92 27.07 27.33 26.75 26.58 26.73 26.95 27.39

3. EXPERIMENTAL SECTION

3.1. Datasets

We used a publicly available video database [29] which provides
high quality movies. The Myanmar video sequence was used for
the training and testing of our algorithm. The video contains 59
scenes from which we use 53 for training and 6 for testing. We use
4 frames from each test sequence and calculate the average PSNR
values from the 24 (6 × 4) resulting test frames as a performance
measure. The Myanmar video is uncompressed and has 4K resolu-
tion (3840×2160 pixels). We downsampled the video to a 960×540
pixel resolution (HR), in order to better compare to the state-of-the-
art SR algorithms. We used ffmpeg [30] to create the LR videos. We
first downsampled and then compressed the video with the H.264
codec. For our experiments, we choose four different compression
levels using the constant rate factor (CRF) values 0, 20, 30, and 40,
where 0 is lossless and 40 is the worst quality.

3.2. Implementation

We implemented our proposed algorithm with the Caffe framework
[31]. The pretraining network has 3 convolutional layers, where lay-
ers 1 and 2 are each followed by a ReLU. Layer 1 has 64 kernels
with a kernel size of 9x9, Layer 2 has 32 kernels with size 5x5 and
the third layer has one 5x5 kernel [15]. The filters of the video SR
architectures have the same configurations as the pretraining SR ar-
chitecture. Following the literature ( [5, 15]), we converted the im-
ages and videos into the YCbCr colorspace and only used the lumi-
nance channel (Y) for training, testing, and PSNR calculation. For
the color images shown in this paper, we bicubically upsampled the
chrominance channels, Cb and Cr. In order to create the video train-
ing set, we extracted sets of 5 consecutive frames from the HR and
the compressed LR training video scenes. Then, we upsampled the
LR video frames by the desired factors with bicubic interpolation to
their original resolution using the Matlab implementation of imre-
size. Afterwards, we calculated the optical flow from the first and
the last two frames towards the center frame and computed the mo-
tion compensated frames. From the resulting 5 frames (4 motion
compensated and one center frame) we extracted 36 × 36 × 5 data
cubes, that is, 36× 36 pixel patches from 5 consecutive frames. We
dismissed patches/data cubes if they did not contain sufficient struc-
tures. The created training database consists of about 900,000 data
cubes. We used the Euclidean distance between the output image
and the ground truth image as loss function. In order to avoid border
effects during the training, we only use the 20× 20 center pixels of
the original patch to calculate the Euclidean loss. The model weights
provided by SRCNN [15] were used for the image SR pretraining.
All the results shown in the experimental Section are evaluated af-
ter 200,000 iterations if pretraining was used, and 400,000 iterations
otherwise.

3.3. Comparison to the State-of-the-Art

We compare our algorithm, henceforth referred to as Compressed
Video SR network (CVSRnet), to the state-of-the-art single frame
and video SR algorithms. The implementations and parameters of
dictionary-based Sparse Coding SR (ScSR) [5], adjusted anchored
neighbor regression (A+) [6] Enhancer [28] and Bayesian-MB [4]
were used as provided by the authors. For the Bayesian adaptive
video SR method from [2] (Bayesian) we used the reimplementa-
tion by [4]. We reimplemented SRCNN [15] and ANN1 [18] using
the Caffe framework [31]. We trained new dictionaries for ScSR
and A+ and new models for SRCNN and ANN on the same com-
pressed video database that we used for the training of our own
method (CVSRnet). All video SR methods were tested using ± 2
neighboring frames.

Table 1 shows the average PSNR values for the different algo-
rithms tested on the Myanmar sequence. The proposed CVSRnet
provides the highest average PSNR for both upscale factors and all
four compression rates. Figure 2 shows an example frame from the
Myanmar test set using upscale factor 3. We show the original frame,
the result obtained by bicubic interpolation, the second best result by
SRCNN [15] and our proposed algorithm (CVSRnet). In addition
for the second row, we show the results that we obtained when we
trained a model on uncompressed videos (CVSRnet-CRF0) and used
it for the super-resolution of the with CRF 30 compressed test frame.
We can see that CVSRnet-CRF0 created artifacts around the edges
for the CRF 30 compressed frame because the training and test data
are not consistent. We can also see an artificial vertical transition line
on the tower created by SRCNN whereas the tower in the CVSRnet
image was reconstructed smoothly.

3.4. Execution Time

We trained and tested the proposed architecture with 3 and 5 input
frames for the Myanmar sequence. For 3 frames we need 14 hours
for the training and achieve a PSNR of 34.33 dB. 5 input frames
require 22 hours for a PSNR of 34.42 dB. Spending 8 hours more
training time for 0.09 dB seems a rather large effort, however the
training happens in advance and is not time critical. The runtime
of the super-resolution process is mainly determined by the motion
compensation, which takes about 55 second per frame. The runtime
of the CNN is 0.17 seconds for 3 input frames and 0.24 seconds for
5 input frames, and is therefore neglectable.

3.5. Pretraining

In this section we trained two models for upscale factor 3 with 3
input frames and no compression to demonstrate the importance of

1we used ReLU instead of Sigmoid as activation function, and bicubically
upsampled input frames instead of the original LR frames. Both changes led
to a better PSNR.
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Fig. 2: Comparison to the State-of-the-Art: SR frames from the Myanmar video compared to our method (CVSRnet) for upscale factor 3

original Bayesian-MB: 28.37 dB CVSRnet MC: 29.94 dB CVSRnet AMC: 30.21 dB

Fig. 3: Frame with motion blurred pigeon from the walk sequence, reconstructed with MC and AMC for upscale factor 3

pretraining. The filters of the model without pretraining was initial-
ized with random Gaussian distributed values with standard devia-
tion of 0.001 and was trained for 400,000 iterations. The pretrained
model was initialized with the filter weights from the pretraining SR
model. The performance of this model did not improve any further
after 200,000 iterations due to the pretrained values. Even without
pretraining we achieve a PSNR of 33.71 dB which is comparable to
the state-of-the-art. However using pretraining leads to a PSNR of
34.33 dBs which is an improvement of 0.62 dBs.

3.6. Adaptive Motion Compensation

We compared the CVSRnet models with and without motion com-
pensated frames to show the effect of motion compensation (MC)
and adaptive motion compensation (AMC). We can see in Table 2
that MC performs best and improves the average PSNR by 0.16 dBs
over no MC and 0.17 dBs over AMC. By applying motion com-
pensation, the neighboring frames become very similar to the center
frame. The remaining differences between the reference and the mo-
tion compensated frames contain information that is beneficial for
the video SR learning process. In order to verify this, we trained a
model where we replaced the 5 consecutive input frames with the
center frame. Therefore for this training there is no temporal infor-
mation available (No Temp.). This model is comparable to the pre-
training architecture but with 5 times more filter coefficients. The
PSNR of this model is 0.43 dB below the MC result. Although the
average PSNR of AMC on our test videos is lower than with nor-
mal MC, the use of AMC led to significant improvements on frames
with strong motion blur and fast moving objects. Figure 3 shows a
frame from the walk sequence with a flying pigeon. The wings ex-

Table 2: PSNR for no motion compensation (MC), no temporal in-
formation (No Temp), normal MC and adaptive MC (AMC) for up-
scale factor of 3 for the Myanmar video.

No MC No Temp. MC AMC

34.26 33.99 34.42 34.25

perience strong motion blur due to their fast motion. We tested the
frames using the proposed CVSRnet algorithm with AMC and stan-
dard MC, where we set the constant k from Equation 3 to 1/8. In
addition, we tested the Bayesian-MB method [4], which is designed
to handle motion blurred frames. The standard MC approach fails to
estimate the motion of these objects which leads to a poor SR recon-
struction. Even the Bayesian-MB method produces artifacts in the
shape of small dots in both examples. The AMC on the other hand
successfully reconstructs the pigeon and improves the PSNR by 0.27
dBs.

4. CONCLUSION

In this paper we have introduced a compressed video SR algorithm
using convolutional neural networks. Our proposed CNN exploits
spatial as well as temporal information. To the best of our knowl-
edge, there is no existing work on CNN based compressed video SR.
Using motion compensated input frames and a pretraining method
we were able to improve the reconstruction quality and reduce the
training time. Finally, we introduced an adaptive motion compensa-
tion scheme to deal with motion blur and fast moving objects. We
presented an algorithm that outperforms the current state-of-the art
algorithms.
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