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ABSTRACT

In this paper, we propose a multiple-frame super-resolution
(SR) algorithm based on dictionary learning and motion es-
timation. We adopt the use of multiple bilevel dictionaries
which have also been used for single-frame SR. Multiple
frames compensated through sub-pixel motion are consid-
ered. By simultaneously solving for a batch of patches from
multiple frames, the proposed multiple-frame SR algorithm
improves over single frame SR. We also propose a novel
dictionary learning algorithm based on which dictionaries are
trained from consecutive video frames, rather than still im-
ages or individual video frames, which further improves the
performance of the developed video SR algorithm. Extensive
experimental comparisons with state-of-the-art SR algorithms
verifies the effectiveness of our proposed multiple-frame SR
approach.

Index Terms— Video super-resolution, dictionary learn-
ing, sparse coding, optical flow estimation.

1. INTRODUCTION

Video SR, namely estimating high-resolution (HR) frames
from low-resolution (LR) input sequences, has become one
of the fundamental problems in image processing and has
been extensively studied since the original work by Tsai and
Huang [1].

There are mainly two categories of SR methods. In the
first category, LR frames are modeled as down-sampled and
degraded by blur and noise versions of the HR frames. With
model-based SR methods, the original HR frames, blur ker-
nel, noise level and motion field are estimated, either simul-
taneously [2–4], or separately [5]. In the second category,
the LR frames are modeled as directly down-sampled version
of the HR frames. Example based or learning based meth-
ods [6–9] are then proposed to estimate the HR frames from
the LR inputs, without explicit estimation of the blur kernel
or noise level. In this paper, we focus on the second category
of methods.

Some important results have been reported applying Dic-
tionary Learning (DL) techniques to the SR of images [6, 7,
10], deblurring [11] and to the denoising of images and image
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sequences [12,13]. However, according to our knowledge, the
only work reported in the literature on the application of DL to
video SR is the work in [8]. According to it, block-based mo-
tion estimation is performed among input and LR key-frames
and DL is only applied for single frame SR when the motion
compensation error is larger than the threshold. The approach
reported in [8] however has neither sub-pixel precision in mo-
tion estimation nor an advanced DL SR technique.

In this work we borrow two ideas from single frame SR,
namely, the bi-level coupled dictionary [6, 7, 14, 15] and the
multiple-dictionary [9] ideas. Based on these we propose a
multiple-dictionary multiple frame video SR algorithm utiliz-
ing sup-pixel accurate motion estimation. With the proposed
SR approach the estimated optical flow is utilized to obtain
multiple-frame high accuracy registration and so that an HR
frame is reconstructed from multiple LR frames.

The multiple-frame SR performance is further improved
by training dictionaries from consecutive video frames. Most
of the DL techniques use still images or individual video
frames to train the dictionaries [6–13, 16] . However, this
causes some inconsistency in multiple-frame SR since we are
super-resolving videos while the dictionaries are trained from
still images. The proposed training from video algorithm
incorporates temporal information of frame patches into the
dictionaries, and makes the training and testing phases con-
sistent. In-depth and comprehensive experiments prove that
our proposed SR framework outperforms state-of-the-art SR
frameworks, such as Bilevel [14, 15], Enhancer [17] and
Bayesian [2] on 4K (2160×3840) sequences.

2. DICTIONARY BASED MULTIPLE-FRAME
SUPER-RESOLUTION APPROACH

Given a LR sequence {I l1, . . . , I lk, . . . }, the goal of SR is to
estimate the corresponding HR sequence {Ih1 , . . . , Ihk , . . . }.
Since each frame is primarily correlated with its neighbors
and to also reduce computation, when we are super-resolving
Ihk , only the (M + N) adjacent frames {I lk−M , . . . , I lk+N}
are used. Clearly when N = 0, causal processing is per-
formed. In this section, we introduce an approach to find the
sparse representation of a sample LR patch yk by incorporat-
ing the motion information from its neighboring frames. The
core idea of this approach originates from the fact that image
registration through motion compensation provides multiple
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observations of the same scene, enabling the SR algorithm to
take advantage of the details lost in the kth frame but present
in past or future frames.

2.1. Multiple Bi-level Dictionary Learning

The first task needed to be addressed is the coupled learning
of matching HR and LR dictionaries over a large database
of training HR images. Each HR image Ihj in the training
database is degraded by blur and noise and down-sampled re-
sulting in the corresponding LR image Ĩ lj . Each LR image
Ĩ lj is up-sampled using bicubic interpolation so that Ihj and I lj
have the same size. In the rest part of this paper, we regard LR
frame I lj as bicubic interpolation upscaled original LR frame
Ĩ lj for convenience. Ihj and I lj are then divided into patches of
size W ×W . All these patches are lexicographically ordered
to form the columns of matrices Y tr andXtr, respectively. In
the dictionary learning phase, we aim at finding HR and LR
dictionaries Dh and Dl such that the sparse representation of
any HR patch over Dh is identical to that of the correspond-
ing LR patch over Dl. In order to do so, Yang et al. [14, 15]
formulated the following bi-level optimization problem

min
Dh,Dl

∥∥Xtr −DhZ
∥∥2
F

s.t. Z = argmin
Atr

∥∥FY tr − FDlAtr
∥∥2
F
+ λ

∑
j

∥∥αtrj ∥∥1∥∥Dh(:, k)
∥∥
2
≤ 1,

∥∥Dl(:, k)
∥∥
2
≤ 1.

(1)
where atrj expresses the sparse representation of the jth

HR/LR patch pair viaDh andDl, respectively, Atr is the ma-
trix containing all the ordered αtrj as its columns, ‖.‖F and
‖.‖1 represent the Frobenius and the l1 norm, respectively, λ
is the regularization parameter which controls the sparsity of
the sparse coefficient atrj , and F is a linear operator which
extracts features from the LR patches. Finally, the notation
Dh(:, k) and Dl(:, k) denotes the kth columns of matrices
Dh and Dl, respectively.

In the testing phase, given an observed LR patch y, we
first solve the following LASSO problem

z = argmin
α

∥∥Fy − FDlα
∥∥2
F
+ λ ‖α‖1 . (2)

Then the sparse coefficient vector z is applied to the HR
dictionary Dh to obtain the HR patch x corresponding to y,
that is,

x = Dhz. (3)

With the bi-level dictionary learning technique, in the
training phase, when updating the sparse coefficient matrix
Atr in the lower level, the optimization is consistent with the
optimization in the testing phase (Equation 2), thus guaran-
teing the reconstruction accuracy. Improved SR results have
been obtained with this bilevel formulation compared to the
previous formulation in [6, 7]

ykyk
MC
−1

Ik
l
+1

Ik
h

yk
MC
+1

Ik
l
−1

xk

Equation ( ),( )5 6

Bicubic
Interpolation

Ik
l
−1

Ik
l

Ik
l
+1

Ik
l

Fig. 1. The multiple-frame SR algorithm for M = N = 1.

Because of the divergent structures and textures in images
of different styles, using a general coupled dictionary is of-
ten not good enough to super-resolve all variations of image
patches. Considering the fact that image patches, according
to their appearance, can be classified into different categories
(such as textures, flat regions, edges, etc.), we train a coupled
dictionary for each such category. The heuristic clustering
strategy in [9] is integrated in our framework. More specifi-
cally, K-Means clustering is performed on sampled LR train-
ing patches Y tr after applying the feature filter F . Let Y trc
be the clustered LR training patches belonging to cluster c,
and Xtr

c its corresponding HR training patches. The coupled
dictionary (Dl

c D
h
c ) is then trained on Xtr

c and Y trc based on
Equation (1).

After learning the C coupled dictionaries (Dl
1 D

h
1 ), . . . ,

(Dl
C D

h
C), during the testing phase, for a sample LR patch y,

the most appropriate dictionary c∗ is determined via

c∗ = argmin
c=1...C

‖Oc − Fy‖22 , (4)

where Oc is the centroid of the columns of the cth LR dictio-
nary. Here, the Euclidean distance between the centroid and
the LR patch is used as the similarity measure. The best dic-
tionary pair (Dl

c∗ D
h
c∗) is then used to find the HR version of

y (denoted by x) by solving Equation (2).

2.2. A Multiple-Frame Super-Resolution Algorithm

A dictionary based multiple-frame super resolution algorithm
(with M = N = 1) is shown in Fig. 1. The three consec-
utive LR frames are shown in pink while the HR frame cor-
responding to the middle LR frame is depicted in green. We
want to estimate the patch xk which is the HR version of the
patch yk, by combining information from patch yk, the mo-
tion compensated patches yMC

k−M , . . . , y
MC

k−1, y
MC

k+1, . . . , y
MC

k+N

and the pre-trained multiple coupled dictionaries (Dl
c D

h
c ).

In this approach, the optical flow estimation is performed
to find the motion compensated versions of yk in the past and
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future frames, denoted by
{
yMC

k+i

}i=N,i6=0

i=−M . To super-resolve
yk in the kth frame, the most appropriate LR dictionary in-
dexed by c∗, out of the C possible choices, is found via Equa-
tion (4). Then the best dictionary pair (Dl

c∗ D
h
c∗) is picked to

find the HR version of yk according to

min
αk,α

MC
k+i

i=−M,...,N,i6=0

∥∥Fyk − FDl
c∗αk

∥∥2
2
+

N∑
i=−M,i6=0

∥∥FyMC

k+i − FDl
c∗α

MC

k+i

∥∥2
2

+λ(‖αk‖1 +
N∑

i=−M,i6=0

∥∥αMC

k+i

∥∥
1
) +

N∑
i=−M,i6=0

γi
∥∥Dh

c∗αk −Dh
c∗α

MC

k+i

∥∥2
2

(5)

xk = Dh
c∗αk, (6)

where αMC

k+i is the sparse representation of yMC

k+i. The first two
terms in Equation (5) ensure the fidelity to the LR observa-
tions (similarly to Equation (2)). The middle two terms are
l1 regularizers promoting the sparse representation of the LR
patches by the LR dictionaries. The last term enforces the
similarity of the reconstructed HR patches from past and fu-
ture frames to the current frame, controlled by the (M +N)
parameters γi. Only αk is used in Equation (6) to reconstruct
the HR patch in the current frame.

3. TRAINING DICTIONARIES FROM VIDEOS

Typically, for the dictionary learning process, all training
patches are sampled from still images or individual video
frames. This causes some inconsistency in training and test-
ing, since we are trying to super-resolve videos while the
dictionaries are trained from still images. Also the optimiza-
tions for training (Equation (1)) and testing (Equation (5) are
not consistent.

We therefore propose a new dictionary training algorithms
based on consecutive video frames and motion estimation.
During the training phase, a number of consecutive video
frames from the training videos are used. The original HR
frames

{
Ihk+i

}i=N
i=−M , are degraded to generate the LR frames{

I lk+i
}i=N
i=−M . Motion estimation is then performed to find

the corresponding patches
{
yMC

k+i

}i=N,i6=0

i=−M

({
xMC

k+i

}i=N,i6=0

i=−M

)
of yk (xk) in the backward and forward frames.

The patch clustering strategy from Section 2.1 is applied
to cluster each training patch set

(
yk,
{
yMC

k+i

}i=N,i6=0

i=−M , xk

)
based on the LR patches yk after applying the feature filter
F . Let

(
Y trk c,

{
Y MC tr

k+i c

}i=N,i6=0

i=−M

)
be the clustered consec-

utive LR training patches belonging to cluster c and Xtr
k c

the corresponding HR training patches to Y trk c. The coupled
dictionary (Dl

c D
h
c ) for the multiple-frame testing is then

trained on Xtr
k c and

(
Y trk c,

{
Y MC tr

k+i c

}i=N,i6=0

i=−M

)
according to

the bilevel dictionary learning in Equation (7). Although the
objective function in Equation (7) is highly nonlinear and
nonconvex, it can be optimized by optimizing alternatively
over

(
Atrk

{
AMC tr

k+i

}i=N,i6=0

i=−M

)
, Dh

c and Dl
c while keeping

other terms fixed.
Notice that the lower level optimization of Equation (7) in

the training phase is now consistent with the optimization in
the testing phase (Equation (5)).

4. EXPERIMENTAL RESULTS

Our proposed algorithm extends the bilevel dictionary learn-
ing [14, 15] in two aspects: from single dictionary to mul-
tiple dictionaries and from single frame to multiple frames.
We first show that each extension is beneficial by compar-
ing the SR performances of single dictionary singe frame SR
(Bilevel), multiple dictionaries single frame SR (MDSF), sin-
gle dictionary multiple frames SR (SDMF), multiple dictio-
nary multiple frames (MDMF) and MDMF with video train-
ing (MDMFVT), i.e., the proposed approach. We also com-
pare the performance of the proposed algorithm with state-
of-the-art video SR algorithms, such as Enhancer [17] and
Bayesian [2].

We performed an extensive set of experiments utilizing
frames of a 4K video database [18]. There is high demand
of upscaling videos of lower resolutions to 4K resolution,
due to the proliferation of 4K monitors. Upscaling of 1080P
(1080× 1920) resolutoin to 4K videos is a representative ex-

min
Dh

c ,D
l
c

∥∥Xtr
k c −Dh

cZk
∥∥2
F

s.t. Zk, Z
MC

k+i
i=−M,...,N,i6=0

= argmin
Atr

k ,A
MC tr
k+i ,

i=−M,...,N,i6=0

∥∥FY trk c − FDl
cA

tr
k

∥∥2
F
+

N∑
i=−M,i6=0

∥∥FY MC tr

k+i c − FDl
cA

MC tr

k+i

∥∥2
F

+
∑

j
λ(
∥∥αtrk j∥∥1 + N∑

i=−M,i6=0

∥∥αMC tr

k+i j

∥∥
1
) +

N∑
i=−M,i6=0

γi
∥∥Dh

cA
tr
k −Dh

cA
MC tr

k+i

∥∥2
F

∥∥Dh
c (:, j)

∥∥
2
≤ 1,

∥∥Dl
c(:, j)

∥∥
2
≤ 1,

(7)
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Bucubic Bilevel [14, 15] Enhancer [17] Bayesian [2] Proposed

Fig. 2. Visual Comparison of SR results on scene 25 and scene 33. Our proposed algorithm can generate natural-looking frames
without noticeable visual artifacts. Because the testing frames have high resolution, results are better viewed in zoomed PDF.

ample used in this paper, resulting in an upscale factor of 2. 50
scenes are used for training and 6 for testing. In the training
phase of these experiments, 800,000 patches sets are sampled
from the center frame and the motion compensated neighbor-
ing frames for training the dictionary from videos, while the
same 800,000 patches in center frames are used for training
the dictionary from images. The patch size is 5 × 5 and no
feature filter is applied to the LR patches. The regulariza-
tion were chosen experimentally to be λ = 2, γi = 0.003.
Every dictionary for the SDSF and SDMF methods has 512
atoms and the dictionary for the MDSF and MDMF has 8 sub-
dictionaries with 512 atoms each. For the multiple-dictionary
in the testing phase, we solve the LASSO problem with only
one sub-dictionary, therefore the comparison is fair.

In the testing phase, 6 consecutive video frames are super-
resolved by each method. For those multiple-frame SR meth-
ods, the current LR frame, together with one LR backward
and one LR forward frames (i.e.,M = N = 1), are utilized to
estimate the current HR frame. We tested a number of optical
flow estimation algorithms [19]. Based on their comparison
we are using the method in [20] in all reported experiments.
Results comparing these methods are shown in Table 1.

Table 1 shows that DL based multiple-frame SR meth-
ods (SDMF, MDMF) outperform single frame SR (Bilevel,
MDSF). We can also see that multiple-dictionary SR meth-
ods improve over single-dictionary SR methods. Finally, the
proposed approach (MDMFVT) provides the best SR perfor-
mance compared to all other methods, including the state-of-
the-art Bayesian [2] and Enhancer [17], proving the effective-
ness of the proposed video training algorithm.

Scene #2 #8 #18 #25 #33 #37
Bicubic 45.32 38.18 41.43 44.40 40.22 48.39
Bilevel [14, 15] 46.17 39.94 43.04 46.69 42.95 49.31
SDMF 46.87 40.08 43.41 47.52 43.08 50.91
MDSF 46.84 40.34 43.37 47.37 43.27 50.05
MDMF 47.72 40.59 43.82 48.45 43.68 52.54
Enhancer [17] 46.01 40.26 43.66 46.21 43.00 50.21
Bayesian [2] 46.49 39.94 43.19 46.08 42.51 49.71
Proposed 48.14 40.98 44.32 49.19 44.49 52.84

Table 1. Experimental result comparing different method in
PSNR.

From the visual comparison results in Figure 2, we no-
tice that all these SR methods produce sharper images than
bicubic interpolation, however artifacts are introduced. Next
we notice that our proposed method has fewer artifacts and
shaper edges compared to all other methods.

5. CONCLUSIONS

In this paper we presented a novel video SR framework based
on dictionary learning and motion estimation by optical flow.
According to it, the HR patches are estimated from multi-
ple corresponding LR patches in multiple frames, making
the dictionary-based reconstruction algorithm more accurate.
The dictionary training algorithm that utilizes multiple frames
of the training videos further improved the SR performance
by making the training and testing phases consistent. We
performed experiments with 4K videos and showed that our
method outperforms the state-of-the-art algorithms.

86



6. REFERENCES

[1] RY Tsai and Thomas S Huang, “Multiframe image
restoration and registration,” Advances in computer vi-
sion and Image Processing, vol. 1, no. 2, pp. 317–339,
1984.

[2] Ce Liu and Deqing Sun, “A bayesian approach to adap-
tive video super resolution,” in Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on.
IEEE, 2011, pp. 209–216.

[3] C Andrew Segall, Rafael Molina, and Aggelos K Kat-
saggelos, “High-resolution images from low-resolution
compressed video,” Signal Processing Magazine, IEEE,
vol. 20, no. 3, pp. 37–48, 2003.

[4] Stefanos P Belekos, Nikolas P Galatsanos, and Agge-
los K Katsaggelos, “Maximum a posteriori video super-
resolution using a new multichannel image prior,” Im-
age Processing, IEEE Transactions on, vol. 19, no. 6,
pp. 1451–1464, 2010.

[5] Qi Shan, Zhaorong Li, Jiaya Jia, and Chi-Keung Tang,
“Fast image/video upsampling,” in ACM Transactions
on Graphics (TOG). ACM, 2008, vol. 27, p. 153.

[6] Jianchao Yang, John Wright, Thomas S Huang, and
Yi Ma, “Image super-resolution via sparse representa-
tion,” Image Processing, IEEE Transactions on, vol. 19,
no. 11, pp. 2861–2873, 2010.

[7] Jianchao Yang, John Wright, Thomas Huang, and
Yi Ma, “Image super-resolution as sparse representation
of raw image patches,” in Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on.
IEEE, 2008, pp. 1–8.

[8] Byung Cheol Song, Shin-Cheol Jeong, and Yanglim
Choi, “Video super-resolution algorithm using bi-
directional overlapped block motion compensation and
on-the-fly dictionary training,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 21, no. 3,
pp. 274–285, 2011.

[9] Shenlong Wang, D Zhang, Yan Liang, and Quan Pan,
“Semi-coupled dictionary learning with applications to
image super-resolution and photo-sketch synthesis,” in
Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on. IEEE, 2012, pp. 2216–2223.

[10] Roman Zeyde, Michael Elad, and Matan Protter, “On
single image scale-up using sparse-representations,” in
Curves and Surfaces, pp. 711–730. Springer, 2012.

[11] Ryo Nakagaki and Aggelos K Katsaggelos, “A vq-based
blind image restoration algorithm,” Image Processing,
IEEE Transactions on, vol. 12, no. 9, pp. 1044–1053,
2003.

[12] Matan Protter and Michael Elad, “Image sequence de-
noising via sparse and redundant representations,” Im-
age Processing, IEEE Transactions on, vol. 18, no. 1,
pp. 27–35, 2009.

[13] Michael Elad and Michal Aharon, “Image denoising
via sparse and redundant representations over learned
dictionaries,” Image Processing, IEEE Transactions on,
vol. 15, no. 12, pp. 3736–3745, 2006.

[14] Jianchao Yang, Zhaowen Wang, Zhe Lin, Xianbiao Shu,
and Thomas Huang, “Bilevel sparse coding for coupled
feature spaces,” in Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 2360–2367.

[15] Jianchao Yang, Zhaowen Wang, Zhe Lin, Scott Co-
hen, and Thomas Huang, “Coupled dictionary training
for image super-resolution,” Image Processing, IEEE
Transactions on, vol. 21, no. 8, pp. 3467–3478, 2012.

[16] Ignacio Ramirez, Pablo Sprechmann, and Guillermo
Sapiro, “Classification and clustering via dictionary
learning with structured incoherence and shared fea-
tures,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp.
3501–3508.

[17] Infognition, “Video enhancer,” 2010,
http://www.infognition.com/videoenhancer/.

[18] Harmonic Inc, “Harmonic 4k footage,” 2014,
http://www.harmonicinc.com/resources/videos/4k-
video-clip-center.

[19] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth,
Michael J Black, and Richard Szeliski, “A database and
evaluation methodology for optical flow,” International
Journal of Computer Vision, vol. 92, no. 1, pp. 1–31,
2011.

[20] Marius Drulea and Sergiu Nedevschi, “Total variation
regularization of local-global optical flow,” in Intelligent
Transportation Systems (ITSC), 2011 14th International
IEEE Conference on. IEEE, 2011, pp. 318–323.

87


