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Abstract 

 

Stereo matching and 3D reconstruction has aroused much attention in the computer 

vision community, due to its potential application in real object modeling and human 

computer interaction. In this thesis, we systemically accomplished the stereo vision 

with the monocular multi-view camera system. A complete calibration procedure is 

proposed and obtains accurate precession. In the linear part of calibration, we show 

how the process in mean rotation outperforms the baseline method in robustness. 

By nonlinear refinement based on Bundle-Adjustment, the reprojection error is 

minimized by the iteration techniques. A Matlab toolbox, implementing the whole 

calibration method, is presented to make the calibration process convenient and 

automatic. With an accurate calibration result, we realized the multi-baseline stereo 

in disparity space, which is rapid in speed and free from distortion. Sufficient 

experiments on both synthetic and real object experiment demonstrate the 

validation of calibration. The depth map generated in disparity space verified the 

efficiency of this approach. Finally, with the ICP algorithm, the 3D reconstruction is 

accomplished by aligning those depth maps captured from a moving camera. 
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Chapter 1 

Introduction 
 

With the rapid development in field of computer vision, measuring the real world 

with stereo vision is a hot trend with tremendous research. To this end, Jiang, etc., 

proposed a prototype for monocular multi-view camera system in 2009 [1], which is 

composed of one fisheye camera with four mirrors around it. (Fig. 1.1 (a)) This 

camera system is equivalent to five subcameras, with the same intrinsic parameters, 

at different positions (Fig. 1.1 (b)). A typical image obtained by this camera system is 

shown in Fig. 1.2. The mirror effect should be taken care of that the left and right 

images are horizontal symmetrical to the center image, and the up and button 

images are vertical symmetrical to the center image. 

 

This camera system holds such advantages as: 

 Identical Intrinsic Parameters with five subcameras; 

 Synchronous in data acquisition; 

 Possible to get stereo vision with one shot; 

 

 

  

(a) (b) 

Fig. 1.1 The Monocular Multi-view camera system 



2 

 

 

 

 

Fig. 1.2 A typical image taken by the camera system 

 

The greatest merit of this camera system in 3D reconstruction is the depth map 

could be obtained with only one shot, while it is impossible to do the structure from 

motion (SfM) with one shot. To this end, we choose the approach of computing the 

depth map from each shot with a moving camera system, then aligning the 3D depth 

points. We especially focus on depth map generation, and contributions are made in 

both calibration and stereo matching. 

 

 

1.1 Related Research 

1.1.1 Camera Calibration 
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When it comes to camera calibration, there are tremendous researches on this topic. 

In the field of omnidirectional camera calibration, D. Scaramuzza’s camera model 

and calibration methods ([2],[3]) outperform others and have merits of no prior 

knowledge of the camera is needed and auto center detection. So we intend to use 

this novel technique in our camera system. 

 

To this monocular multi-view camera system, Jiang, etc. proposed a calibration 

method [1] based on catadioptric geometry with single shot. However, our 

experience shows it is not sufficient. Even taking average of the results by many 

shots sometimes suffer from the trouble of misleading. 

 

There are some researches on calibration of multiple camera system: T. Svoboda [10] 

proposed a self-calibration method by a moving light spot to calibrate the multiple 

camera system mounted inside a room. K. Danilidis [12] then extended this method 

by adding radical distortion into consideration. However, their multiple camera 

system is set in different places inside a room to monitor the activities inside the 

room, which is not appropriate to calibrate our camera system. 

 

 

1.1.2 Stereo Vision 

 

According to the D. Scharstein’s taxonomy [8], numerous methods exist in stereo 

matching. Usually these methods are based on one rectified image pairs with one 

baseline. Since our camera system is designed for multi-baseline stereo with four 

baselines, M. Okutomi’s multiple baseline stereo [4] would be a proper choice. In 

detail, the SSSD function are introduced and proved to be capable of eliminating 

mismatching caused by ambiguity in the input images. 

 

The top performer in Middleburry benchmark [8] by X. Mei, etc. shows how to 

implement stereo matching in disparity space, which is parallel in natural and could 
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achieve real time performance in GPU. Their approach enlightens us in 

multi-baseline stereo could also be implement in disparity space. 

 

1.2 Overview of Our Work 

 

Our work’s contribution lies in two aspects: calibration and stereo matching. 

 

In camera calibration, we systematically accomplished the calibration of the 

monocular multi-view camera system. Our proposed method is composed of linear 

initialization part and nonlinear refinement based on Bundle-Adjustment.  

 

In detail, the key part in linear initialization is the process of ‘mean rotation’ 

procedure, which estimates two sets of rotation: rotation from chessboard to center 

camera, rotation from center camera to subcamera, simultaneously, which makes 

the proposed algorithm robust and free from misleading. The computational cost of 

this linear calibration is so low that D. Scaramuzza’s strategy of iterative center 

detection could be succeeded. So our calibration method also does not need the 

visible circle bound to detect the image center. 

 

The nonlinear refinement based on Bundle Adjustment is intended to maximize the 

likelihood in by minimizing the reprojection error. By experience we found 

optimizing both intrinsic and extrinsic parameters at the same time always fails into 

local minimum, so we split the optimization problem into two steps: refine the 

extrinsic parameters followed by optimize the intrinsic parameters, and solve this 

problem by iteration with Levenberg-Marquardt algorithm [15]. 

 

The proposed calibration method is implemented by a Matlab Toolbox and verified 

by both synthetic data and real object experiment, showing that our proposed linear 

approach is free from misleading and outperforms those baseline methods. 
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In stereo matching, our contribution lies in the implementation of multi-baseline 

stereo in disparity space. 

 

The disparity space approach is nature in parallel and compact in data structure. Our 

implementation in Matlab shows it is at least 100 times faster than the general 

approach. GPU computation by CUDA would get an even higher computation speed, 

which is essential in case of the moving of camera. 

 

What’s more, the disparity space method is free from both lens distortion and 

perspective distortion, making the matching with a large local window feasible. 

 

With the computed depth maps obtained by a moving camera system, the 

well-known ICP algorithm [20] is utilized to align those 3D points from depth map, 

and then the 3D reconstruction by the moving camera system is accomplished. 
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Chapter 2 

Preliminaries and Notations 
 

2.1 A Parametric Camera Model for Omnidirectional Camera 

 

D. Scaramuzza’s model [2], [3] of omnidirectional camera is shown in Fig. 2.1. Two 

distinct references are identified: the camera image plane(       ) and the sensor 

plane(     ). The camera image plane is the same as the camera CCD, where the 

points are expressed in pixel coordinates. The sensor plane is a hypothetical plane 

orthogonal to the mirror axis, with the origin located at the plane-axis intersection. 

 

Let   be a scene point. Then assume     [       ]  be the projection point of   

into the sensor plane (Fig. 2.1 (b)), and    [     ]  be tis image in the camera 

plane (Fig. 2.1 (c)). As obersved by B. Micusik [16], these two coordinate system are 

related by an affine transformation, which incorporates the digitizing process and 

small axes misalignments; thus          . 

 

 

Image plane 

 
 

(a) (b) (c) 

Fig. 2.1 
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At this point  , the imaging function   is introduced to captures the relationship 

between a point     in the sensor plane and the vector   emanating from the 

viewpoint   to the scene point  : 

        (   )   (    )     (2.1) 

where        is the perspective projection matrix. Let us assume for   the 

following expression: 

  (       )  (         (       ))
 

 (2.2) 

A polynomial form is used to describe  (       ) 

  (       )        
      

             (2.3) 

where 

    √          

What’s more, according to research [17], [18] and [19],   should satisfy: 

 
  

  
|
   

   (2.4) 

So    should be 0, and thus (2.3) can be rewritten as: 

  (       )        
             (2.5) 

 

And the whole parametric camera model could be simplified as  

   [

 
 

 ( )
]      (2.6) 

The novelty of D. Scaramuzza’s model is that it occupies a common polynomial 

equation to describe the distortion of the lens, thus free the user from some specific 

model which needs some prior knowledge about lens (fisheye or catadioptric, 

different kinds of mirrors in catadioptric case, etc.). So this camera model is truly 

general and easy to implement with D. Scaramuzza’s toolbox [3]. 
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After the calibration of the camera, the projection from 3D points onto the image is 

often used, here we simply demonstrate how it is implemented. 

 

Assume there is a 3D point   [     ] , and its projection in the image is 

  [   ]  

 

So such equation holds 

  [

 
 

 ( )
]  [

 
 
 
] (2.7) 

Where   √      

 

From equation (2.7), it could be derived that 

 
 ( )

 
 

 

√     
   (2.8) 

here   is a constant determined by   

 

So 

  ( )      (2.9) 

 

Thus   could be uniquely solved by the following polynomial equation 

    (    )     
     

     
    (2.10) 

 

With the solved  , the projection point in image   [   ]  is available: 
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   [   ]  [  
 

√     
   

 

√     
]
 

 (2.11) 

Thus the problem of projection from a 3D point onto the image is solved. 

 

 

2.2 System Configuration 

 

As shown in Fig. 1.1 (a), four well-polished planar mirrors are placed around the 

fisheye lens. The Field of View (FOV) and optical axes of those mirrored cameras is 

solely determined by the placement angle and the size of the mirrors. 

 

So raises the problem of how to design such camera system: the optimum position 

and size of those mirrors. To the purpose of 3D reconstruction, common FOV of all 

subcameras is our main concern, since with the increased number of matching in 

different sides of view, the multi-baseline stereo would show its advantage in 

elimination of mismatching. 

 

The system configuration in [1] should be extended since some of the fisheye lens 

does not have a view angle of 180°in arbitrary sectional side, which may lead such 

former design invalid with such fisheye lens (Fig. 2.2). 
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Fig. 2.2 Image captured by the proposed system with Sony NEX-5D with Lens: 

16mm/F2.8+ Fisheye converter. This camera’s maximum view-angle is only about 

160° in horizontal and 90° in vertical, which leads to an invalid system with such 

small common FOV. 

 

The extended model is shown in Fig. 2.3. Here   means the maximum view-angle of 

the lens in the slide. With the limitation of mirrors,     are the view-angles of the 

center real camera   and mirrored subcamera    respectively. The mirror size is 

 , and     are the distance from mirrors to Y axis and Z axis.         mean the 

mirror angle and the angle between the axes of the two cameras. 

 

The relationship between the above parameters is shown as follows: 

 

            
            

 

 

        
          

 ̂    
 

 

 ̂       
 (2.12) 

   
   

 
 (2.13) 

         (2.14) 
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where  ̂  
 

 
, represents a normalized mirror size. 

 

Fig. 2.3 The extended model for mirror placement and mirrored camera 

 

Compare to distance from the camera system to object, the baseline is relatively 

short, so it is reasonable to put do such approximation in computing the common 

view angle   (Fig. 2.4): 

      (     )     (     ) (2.15) 

where 

        
 ̂     

 
 

 ̂        
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Fig. 2.4 Common view angle for a far distant object 

 

Fig. 2.5 portrays the relationship between common view angle with mirror angle 

with different maximum view-angle and different normalized mirror size: 
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Fig. 2.5 Common angle   

 

From Fig. 2.5, such conclusions about the design of the system could be obtained: 

 With the decrease in maximum view-angle ( ), the optimum common view angle 

( ) decreases; 

 The optimum mirror angle ( ) is not affected by the decrease in maximum 

view-angle ( ) and is always around 60 degrees; 

 With a fixed maximum view-angle ( ), a larger  ̂ is preferred, which mean we 

should make the mirror bigger (increase  ) or move the mirror closer to the 

camera in parallel (decrease  ); 

 

 

2.3 Geometry of Catadioptric Stereo 

 

2.3.1 Position and Orientation of the Mirrored Cameras 
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As stated in [1], images by one real camera and four mirrored cameras could be 

taken in one shot, and the extrinsic parameter between cameras could be 

determined in 2 steps: 

 

Step 1: Determine the position of Mirrors 

 

As depicted in Fig. 2.6, with the geometry relationship between a real and mirrored 

target, the mirror position and orientation could be determined: 

   
  

  
    

 

|  
    

 |
 (2.16) 

   
  

(  
    

 )   
 

|  
    

 |(    
    

 )
 (  

    
 ) (2.17) 

 

Fig. 2.6 Real and mirrored targets 

 

Step 2: Determine the position of Mirrored Cameras 

 

As shown in Fig. 2.7, the real camera and mirrored camera are symmetry about the 

mirror, which position and orientation are already known, so the optical center   
  

and the rotation matrix    of the     mirrored camera are available: 

   
      

   
   (2.18) 
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   =I-2  
   

  
 (2.19) 

 

Fig. 2.7 Real and mirrored cameras 

 

Look deep into (2.18) and (2.19) we may find the transform from the real camera to 

one mirrored camera has only 3 degree of freedom (DOF) while a general transform 

should have 6 DOF. The decrease in DOF is caused by the limitation of ‘mirrored 

motion’, which cuts 1 DOF in rotation and 2 DOF in translation. The 3 DOF could also 

be explained by the fact that the mirror plane in 3D space has 3 DOF: 

               (2.20) 

with the constraint 

               (2.21) 

 

2.3.2 Restrict 6 DOF to 3 DOF 

 

Our proposed calibration starts from a general case so there raises the problem of 

how to restrict the general 6 DOF to the mirror 3 DOF. 

 

Our proposed strategy is to calculate the normal vector of the rotation first then use 

this normal vector to cut 1 DOF in rotation and 2 DOF in translation. 
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Let us assume a general rotation matrix    rotates the vector    [    ] : 

 

         [

         

         

         

]  [
 
 

  
]   [         ]    (   ) (2.22) 

where  (   )         indicates the ith column of the rotation matrix  . 

 

Thus the normal vector of mirrors is: 

   
     

‖     ‖
 (2.23) 

Then use equation (2.19) to get the mirror rotation matrix. 

 

The normal vector of the mirror   [      ]  could be used to restrict the 

direction of a general translation    [      ]
  by solving   in the 

following linear system: 

 {
       

       

       

 (2.24) 

Finally the mirror translation   equals: 

       (2.25) 
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Chapter 3 

Calibration of the Monocular Multi-view Camera 

System 
 

By calibration our monocular multi-view camera system we mean the estimation of 

the intrinsic parameters of the fisheye camera and the extrinsic parameters which 

describe the transform between subcameras and chessboard. This calibration is 

extended from D. Scaramuzza’s calibration method for single omnidirectional 

camera [2], [3] and inherits the advantage of auto center detection. In detail, our 

calibration composes of a linear estimation followed by a nonlinear refinement 

based on bundle adjustment. Finally, we demonstrate the possibility to extend our 

calibration method to general multiple omnidirectional cameras system. 

 

 

3.1 The Formulation of Calibration 

 

Davide Scaramuzza’s camera model could be summed up in Fig. 2.1 (see detail in 

Section 2.1) and equation: 

 

     [

   

   

 (   ) 
]      (3.1) 

Where  (   )            
  

In detail, a polynomial equation  (   )  is utilized to describe the distortion 

characteristic of the omnidirectional camera.  
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When it comes to calibration of single Omnidirectional Camera, equation (1) could 

be extended to 

     [

   

   

 (   ) 
]      [  

    
   

   ]  [

   

   

 
 

]  [  
    

   ]  [

   

   

 

] (3.2) 

The detailed calibration method is shown in his paper [2], [3]. 

 

Our Monocular Multi-view Camera system (Fig. 1.1 (a)) is composed of one fisheye 

camera and four mirrors around it, which it equivalent to five fisheye cameras at 

different positions (Fig. 3.1). 

 

 

Fig. 3.1 The equivilant camera system 

 

As shown in Fig. 3.1, the homogeneous transform matrix     (         ) could 

be used to describe the relative space transformation between the center real 

subcamera and the other virtual subcameras. 

 

Fig. 1.2 shows a typical image taken by this camera system, which could be divided 

into five regions and the image in each region is viewed in different perspectives.  

 

Thus equation (3.2) could be transformed in to the following structure: 
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(3.3) 

Cross product could be applied to eliminate the unknown scale factor    ,  

 

  0

1

0

100010001
3333231

2232221

1131211

3333231

2232221

1131211











































































































ij

ij

nnnn

nnnn

nnnn

mmmm

mmmm

mmmm

ij

ij

ij

ij

Y

X

trrr

trrr

trrr

baaa

baaa

baaa

f

v

u





 

(3.4) 

Then equation (3.4) could then be expanded and simplified as follows: 
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(3.5) 

 

Now, let us focus on a particular observation of the calibration pattern. From (3.5), 

we have each point (         ) on the pattern contributes three homogeneous 

equations: 

     
           

     
           

     
     



































0

0

0

3213221212113113211211113132121111

3223222212213123212211213232221212

3213221212113113211211113132121111

3233223212313133213211313332321313

3223222212213123212211213232221212

3233223212313133213211313332321313

nmnmnm
ijij

nmnmnm
ijij

nmnmnmm
ij

nmnmnm
ijij

nmnmnm
ijij

nmnmnmm
ij

nmnmnm
ijij

nmnmnm
ijij

nmnmnmm
ij

nmnmnm
ijij

nmnmnm
ijij

nmnmnmm
ij

nmnmnm
ijij

nmnmnm
ijij

nmnmnmm
ij

nmnmnm
ijij

nmnmnm
ijij

nmnmnmm
ij

rararaYvrararaXvtatatabv

rararaYurararaXutatatabu

rararaYfrararaXftatatabf

rararaYurararaXutatatabu

rararaYfrararaXftatatabf

rararaYvrararaXvtatatabv





 

 (3.6) 



20 

 

In the above three equations,                     are all already known. The 

purpose of the calibration is to solve those     (describe the space transformation 

between subcameras),     (describe the position of chessboard in each shot) and 

(           )  (intrinsic parameters which describe the distortion of fisheye 

camera). 

 

When analyze deeply in these three homogeneous equations, we may find that 

though the parameters to solve are nonlinear, they are symmetric in combination 

thus provide us some strategy to solve these parameters step by step. 

 

According to Jiang’s paper [1] (see detail in Section 2.3), the transformation matrix 

from base camera to subcamera should have only 3 Degree of Freedom (DOF); 

however the above transformation serves as a general transformation, which holds 6 

DOF. For one thing, we hope our model as general as possible, for another, put the 

constraint of 3 DOF at the beginning would make the equation highly nonlinear, 

which is impossible to solve. A strategy is provided to take the constraints into 

consideration in section 2.3.2. 

 

 

3.2 The Solution of Calibration Model 

 

3.2.1 Solving for camera extrinsic parameters 

 

Observe that the first two equations of (3.6) are highly nonlinear since  (   ) is 

multiplied with other unknown factor there. Thus we should begin with the third 

equation of (3.6). 

First let us put those nonlinear combinations together. 
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(3.7) 

Then the third equation of (3.6) would become linear 
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By stacking all the unknown entries of (3.8) into a vector we rewrite the equation 

(3.8) for all points of the calibration pattern as a system of linear equations 

 0HM  (3.9) 
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A linear estimate of   can be obtained by minimizing the least-squares criterion 

   ‖   ‖ , subject to ‖ ‖   , which could be accomplished by using the SVD. 

The solution of (3.9) is known up to a scale factor    . 

 

Notice in (3.7),   
     

     
         

   could be expressed in the following way 
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Since the product of two rotation matrixes is still a rotation matrix, which is 

orthonormal. Because of the orthonormality, the unknown scale factor     can be 

computed uniquely, thus   is available now. 

 

Let us still focus on (3.10) and rewrite it as          . As the described in the 

notations, when    (   )   ,      since it is directly shot by the 

base-camera. So             , which gives us an initial estimation of   .  

 

In different shots, with the change of position of chessboard,    may change while 

   should be constant since the space translations between subcameras are 

constant. 

 

Here a 2 Steps algorithm is proposed to solve    and   : 

 

Step 1: Mean rotation of    

In each shot,    could be calculated with the estimated value of    

 
Tnmnm

n REA   (3.11) 

 

Here we write    as   
  because due to errors,    calculated by each shot is 

different. A natural idea to get a good estimation of rotation matrix    among all 

rotation matrixes   
  is to calculate the ‘mean rotation’ of all   

  

  ,..., 21
m
N

mmm AAAA   (3.12) 

 

 means the mean rotation in Riemannian space, and M. Moakher in [9] derives 

the formula to calculate the mean rotation matrix 
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Step 2: Mean rotation of    

 

Now we have the overall estimation of    from all shots, which makes it possible 

to update the initial estimation of    

 
nmTmn EAR ,  (3.14) 

 

In this term, we could get   matrixes with each shot. Just like as done above, let us 

denote them as   
  and estimate    by mean rotation matrix of those   

  

  ,..., 21
n
M

nnn RRRR   (3.15) 

 

Since we have a better estimation of    now, we could repeat Step 1 to get better 

estimation of    then repeat Step 2 to achieve better estimation of   . Our 

experience is usually 5 such iteration is enough to converge. 

 

Up to now, all the parameters related to rotation are solved. Let’s move on to (3.7.1) 

and (3.7.2) to solve translation related parameters. 
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With the estimation of rotation, (3.16) is a linear system. However, if we expand 

such equation, we would get such linear system 
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(3.17) 

It is fairly possible that the group of (  
    

 ) changes correspond to the change of 

  
  while the total evaluation of the system does not change, which means it is now 

impossible to solve (  
    

 ) and   
  (The matrix is not full-rank). However, we 

could combine them together then solve these combinations 

Let 
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(3.16) could be rewritten as 
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Then the least-squares solution of   
     

     
        

  could be obtained by using 

pseudo inverse. 

 

3.2.2 Solving for camera intrinsic parameters 
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Till now, we are working on the third equation of (3.6), having got the solution of 

rotation parameters together with   
    

 , and partly got the solution of 

  
    

        
 . 

 

Now let’s move on to the first two equations of (3.6) to solve those intrinsic 

parameters and the rest of extrinsic parameters. 

 

By substitute (3.7) into these two equations, system (3.6.1) and (3.6.2) could be 

simplified as 
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As done before, the linear system (3.20) could be solved by using pseudoinverse. 

 

Finally, we solve the following equations to obtain all the parameters. 
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Now all the parameters are obtained. Although the above solving method is 

complicate, the calculations there are all linear, which means that the computation is 

really fast. 

 

3.3 Iterative Center detection 

 

To desire the capability of identifying the center of the omnidirectional image   , 

We similarly employ D. Scaramuzza’s way to detect the camera center. 

 

To this end, observe that our calibration procedure correctly estimates the intrinsic 

parametric model only if    is taken as origin of the image coordinates. If not so, 

we observe that the reprojection error would be quite large. Motivated by this 

observation, we assume that the Sum of Squared Reprojection Errors (SSRE) always 

has a global minimum at the correct center location. 

 

This assumption leads us to an iterative search of the center   : 

1. At each step of this iterative search, a particular image region is uniformly 

sampled in a certain number points. 

2. For each of these points, calibration is performed by using that point as a 

potential center location, and SSRE is calculated. 

3. The point giving the minimum SSRE is assumed as a potential center. 

4. The search proceeds by refining the sampling in the region around that point, 

and steps 1,2 and 3 are repeated until the stop conditions (small difference 

between two potential center locations or total number of iteration) is satisfied. 

 

As mentioned above, since the computation for each calibration is really fast, the 

iterative search does not take long to stop and would provide reasonable precision. 
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3.4 Non-linear Refinement by Bundle-Adjustment 

 

The linear solution given in previous subsections 3.1, 3.2, 3.3 is obtained through 

minimizing an algebraic distance, which is not physically meaningful. To this end, we 

chose to refine it through maximum likelihood inference. 

 

If we have taken   shots with   subcameras and   corner points on chess board, 

let us assume that those corner points are corrupted by independent and identically 

distributed noise. Then the maximum likelihood estimate could be derived by 

minimizing the following cost function: 
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(3.22) 

 

where  ([    ] [ 
   

   
] [       ] ) is the projection of the point 

[       ]  of the     shot in     subcamera (see detail in Section 2.1). 

Observe that now we could incorporate the affine matrix    (see in [2], [3]) and 

the center of the omnidirectional image    into this cost function. 

 

Both extrinsic parameters (   ,   ,   ,   ) and intrinsic parameters 

((           ),   ,    ) are optimized by minimizing the cost function (3.22), 

which is actually minimizing the reprojection error. As mentioned in [2], we could 

split the minimization into two steps: 

1. Refines the extrinsic parameters; 

2. Uses the extrinsic parameters refined in step (1) to refines the intrinsic ones; 

 

To minimize (3.22) separately, we use the Levenberg-Marquadt algorithm [15], 

which is available in Matlab’s Optimization Toolbox implemented by the function 
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lsqnonlin. Our linear calibration results would provide the initial guess of the 

algorithm. We choose the unitary matrix as the guess of   , while for    we used 

the position estimated through the iterative procedure explained in Section 3.3. 

 

Because of the difference between our camera system and single omnidirectional 

camera (more parameters to estimate), we repeat step (1) and step (2) in sequence 

to get a better calibration results, usually 10 iterations are enough to converge. 
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Chapter 4 

Rectification 
 

In this section, we present two ways to rectify the image: perspective reprojection 

and epipolar curve. The purpose of rectification is to compensate the lens distortion 

and making the stereo matching easier: restricted into one dimension. In perspective 

reprojection, we reproject the images obtained by five subcameras to five parallel 

planes, making the system equivalent to 5 perspective camera with the same focal 

length. In epipolar curve, we derive the epipolar constraint in our camera system by 

directly project a 3D vector from center camera into subcameras around it. All these 

two approaches are supported by the calibration results. Finally, we compare these 

two approaches and choose the epipolar curve for further research. 

 

4.1 Perspective Reprojection 

 

In the perspective reprojection approach, five perspective projection images are 

created for further research on stereo matching. 

 

As shown in the slide of the camera system in Fig.4.1, with the calibration results of 

intrinsic and extrinsic parameters of the camera system, we project 5 sub-images 

into 5 different parallel planes. 
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Fig. 4.1 Projection planes for the reprojection in slide of the camera system 

 

In detail, the reprojection is done actually in an inverse process as described above: 

for each pixel in reprojection image, we computes its position in 3D space then do 

the ‘world to camera’ projection (see detail in 2.1) to get its position in pixel in 

original images, finally a bilinear interpolation is used to get the intensity of the pixel 

with sub-pixel precision. 

 

After rectification of perspective reprojection, the camera system is equivalent to 

parallel stereo with an anteroposterior offset composed of 5 perspective camera 

with known position. 

 

 

4.2 Epipolar Curve 

 

Another way of rectification is choosing epipolar curve. As shown in Fig. 4.2, consider 

one pixel (   ) in image of center camera  , according to the intrinsic parameters 
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of the camera, a vector   in 3D space could be obtained. All the possible stereo 

matching point to (   ) in image of subcamera    should lie in the curve  : the 

projection of vector   into subcamera   .  

 

Fig. 4.2 Formation of Epipolar curve 

 

However, due to the limitation of camera model, the analytical expression of the 

curve   with respect to point (   ) is unavailable. So we turn to numerical 

methods: using discrete points to represent the curve   according to point (   ). 

In detail, some discrete 3D points are sampled on   and projected (see detail in 2.1) 

to the image of subcamera    to generate curve  . 

 

Here rises another problem: how to choose the discrete points in vector   to make 

there projection points in curve   as even as possible? 

 

According to parallel stereo, there is a relation between disparity ( ) and inverse 

depth (  ⁄ ): 

 Z
BFd

1
  (4.1) 

Here   means the length of baseline and   is the focal length. 
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Although our camera system is not parallel stereo camera system, (4.1) still guides us 

that we should choose the search of depth with arithmetic sequence in inverse 

depth: 

 c
zz kk


1

11

 (4.2) 

Let      and      be the minimum and maximum of the sequence of depth 

respectively and   be the resolution of depth, i.e., the number of series of depth, 

thus 
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Equation (4.3) formulate the discrete point in depth search sequence, which is 

depend on three factors:     ,     ,  . 

 

  could be simply decided by the resolution of image, for example with the 

resolution of 1600Χ1200 of the whole image, after divided into 5 sub images, each 

sub image has the resolution about 400Χ300, then it is reasonable to choose 

      since those projected points is approximately equally spaced. 

 

As shown in Fig. 4.3, with the increase length of  , the projection point of   in 

subcamera    changes. However, the projection point would finally stop changing 

at the Vanish Point when   reaches infinity. So the nearest integer pixel around 

vanish point is used to estimate maximum depth. 
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Fig. 4.3 The Vanish Point to estimate the maximum depth 

 

After calculation, the maximum depth of our camera system is about 3m, which 

guides us to choose the proper value of     . As to     , 10 cm is usually used. 

 

So far are the details in epipolar curve, the image is unchanged while the curves are 

used as the epipolar constraint. 

 

 

4.3 Comparison of Perspective Reprojection with Epipolar Curve 

 

Now two methods are available now, and we want to choose a better one for our 

future research, so Table 4.1 is made to compare the advantages and disadvantages 

of these two approaches: 
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 Perspective Reprojection Epipolar Curve 

Advantages Distortion are moved; 
Much lighter computation; 

Flexible; 

Disadvantages 

Heavy computation; 

Not parallel stereo so still need 

epipolar constraints; 

 

Distortion still exists; 

Table 4.1 Comparison between Perspective Reprojection and Epipolar Curve 

 

As to distortion, perspective reprojection does not have such problem since the 

whole images are rectified, while epipolar curve still face the problem of distortion, 

which might be a problem in stereo matching since the content in a matching 

window is distorted. However, our novel approach of stereo matching in disparity 

space is free from lens distortion in nature (presented in Section 5.2.3). 

 

When it comes to the cost of computation, the epipolar curve approach has huge 

advantage not only because relative lighter computation but also the key fact that all 

those curves need to be computed only once. In practice, the strategy of saving time 

by space could be utilized: storing those curves in memory and free from the 

computation of projection of curves in each time. While the perspective reprojection 

does not hold such merits: the whole image are rectified in each time and the 

computation cost is heavy. 

 

Last but not least, after perspective reprojection, the rectified images still does not 

hold the direct constraint: 

 

     yyxdxfyxf ,,, 21   (4.4) 
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The fact Equation (4.4) does not hold implies further rectification is need with 

heavier computation cost. 

 

Taking all these merits and demerits into consideration, we would prefer epipolar 

curve as the rectification method and utilize it in stereo matching in the next 

chapter. 
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Chapter 5 

Multi-Baseline Stereo 
 

With the foundation of accurate calibration result and rectification method of 

epipolar curve, stereo matching is obtainable now. Stereo matching is one the most 

active research areas in computer vision, a large number of algorithms for stereo 

correspondence have been developed. According to the taxonomy and the test bed 

of Middlebury in [8], there are more than 100 algorithms related to this topic. 

 

Due to the special feature: more than one baseline of our camera system, 

multi-baseline stereo [4] is appropriate, so we first derive the mathematical analysis 

of multi-baseline stereo in our camera system. Then a general approach is present. 

Finally we learn the idea from [5], which is the top performer in the Middlebury 

benchmark now (May 2012), to implement the multi-baseline stereo in disparity 

space, which is much faster and more flexible. What’s more, the disparity space 

approach holds the merit of free from distortion. 

 

 

5.1 General Approach 

 

In [4], the author derives the mathematical analysis of multi-baseline stereo in 

parallel stereo. However our camera system is not parallel stereo camera system so 

here we re-derive the mathematical properties of multi-baseline stereo in our cases 

and then provides a practical way to implement it. 

 

5.1.1 The SSD function 
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In our camera system, there are five equivalent cameras at different position, so let 

us suppose their position as                according to the index defined in Fig. 

3.1. 

 

Let   ( ) and   ( )            be the image pair taken by the center real camera 

and the     subcamera respectively. Imagine a scene point   whose true depth 

and coordinate in center image is    and (   ) respectively. Then point  ’s 

disparity   for the image pair taken from    and    is 

 

  (   )
 ( )  (   )   (       

(     (   ))
 

‖(     (   ))‖
) (5.1) 

 

where     is the transformation from center real camera to subcamera   (shown 

in Fig. 3.1).  ( ) means the projection from 3D space to image plane (see detail in 

Section 2.1). 

 

The image intensity function   ( ) and   ( ) near the matching position for   

could be expressed as 

   (   )   (   )    (   ) (5.2) 

   (   )   ((   )   (   )
 ( ))    (   ) (5.3) 

 

Assuming that  (   ) is true intensity of the image without noise and the white 

noise   (   ),    (   ) obey such distribution independently: 

   (   )   (   )  (    
 ) (5.4) 

 

The SSD value   ( )  over a window   at a pixel position of (   )of image 

  (   ) for the candidate disparity  (   )( ) is defined as: 
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   ( ) ((   )  ( ))  ∑ (  ((   )   )    ((   )   (   )( )   ))
 

    (5.5) 

where the ∑ ( )    means summation over the window.  

 

The  (   )( ) that gives a minimum of   ( ) ((   )  (   )( )) is determined as the 

estimation of the disparity at (   ) . Since the SSD measurement 

  ( ) ((   )  (   )( )) is a random variable, its expected value could be computed: 

 [  ( ) ((   )  (   )( ))]

 ∑ ( ((   )   )   ((   )   (   )( )   (   )
 ( )   ))

 

   

      
  

 (5.6) 

 

here    is the number of pixels inside the window. 

 

By assuming the true disparity  (   )
 ( ) is constant over the window, (5.6) says that 

naturally the SSD function   ( ) ((   )  (   )( )) is expected to take a minimum 

when  (   )( )   (   )
 ( ), i.e. at the right disparity or depth. 

 

 

5.1.2 Elimination of Ambiguity by SSSD function 
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First let us show how the SSD function   ( ) ((   )  (   )( )) fails when there is 

ambiguity in the underlying intensity function. Suppose the intensity signal  (   ) 

has the same pattern around pixel positions (   ) and (   )    in a window   

  ((   )   )   ((   )     )          (5.7) 

where     is a constant. Then from equation (5.6) 

  [  ( ) ((   )  (   )( ))]   [  ( ) ((   )  (   )( )   )]       
  (5.8) 

 

This means that the ambiguity is expected in matching in terms of position of 

minimum SSD value, so SSD function fails in stereo matching when ambiguity arises. 

 

Now we rewrite equation (5.1) into a function form: 

  (   )
 ( )   ((   )        ) (5.9) 

Similarly: 

  (   )( )   ((   )       ) (5.10) 

 

Where    and   are the true and candidate depth, respectively. We write the SSD 

with respect to the depth by substituting (5.10) into (5.5): 

   ( )((   )  )  ∑ (  ((   )   )    ((   )   ((   )       )   ))

 

     

 (5.11) 

 

At position (   ) for a candidate depth  , its expected value is 
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 [  ( )((   )  )]

 ∑ ( ((   )   )   ((   )   ((   )          )   ))

 

   

      
  

 (5.12) 

 

Finally, we define a the SSSD evaluation function   (    )((   )  ), the sum of SSD 

functions with respect to depth   for multiple pairs, which is obtained by adding 

the SSD function   ( )((   )  ) for individual stereo pairs: 

   (    )((   )  )  ∑   ( )((   )  ) 
    (5.13) 

 

The expected value for (5.13) is: 

 [  (    )((   )  )]

 ∑ [  ( )((   )  )]

 

   

 ∑ ∑ ( ((   )   )

   

 

   

  ((   )   ((   )          )   ))

 

       
  

 (5.14) 

 

Now let us show how SSSD function is now capable of eliminating the ambiguity. 
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As done before, suppose the underlying intensity pattern  (   ) has the same 

pattern around  (   ) and (   )    (equation (5.7)). 

  [  ( )((   )   )]   [  ( ) ((   )   )]       
  (5.15) 

where the false depth    satisfies: 

  ((   )   )   ((   )   ((   )           )   )      (5.16) 

 

Ambiguity still exist now since a minimum is expected at a false depth   . However, 

an important point to be observed here is that this minimum for the false depth    

changes its position as the transformation     changes, while the minimum for the 

correct depth    does not. 

 

This is the property makes new SSSD evaluation function eliminates the ambiguity. 

For example, in our camera system, we have four subcameras thus we have four 

transformation matrixes (i.e. four baselines):                . (         

       ). From equation (5.14) 

 [  (    )((   )  )]

 ∑ [  ( )((   )  )]

 

   

 ∑ ( ((   )   )   ((   )   ((   )          )   ))
 

   

 ∑ ( ((   )   )   ((   )   ((   )          )   ))
 

   

 ∑ ( ((   )   )   ((   )   ((   )          )   ))
 

   

 ∑ ( ((   )   )   ((   )   ((   )          )   ))
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 (5.17) 

It could be proved that 

  [  (    )((   )  )]       
   [  (    )((   )   )]            (5.18) 

 

In conclusion,   (    )((   )  ) is expected to have the smallest value only at the 

correct   , in other words, the ambiguity is now eliminated by the SSSD function. 

 

5.1.3 Implementation in our camera system with epipolar curve 

 

After the mathematical analysis of the properties of multi-baseline stereo, here we 

show a practical way to implement it. 

 

The slide view of our camera system is shown in Fig. 5.1 and Fig. 5.2, for a pixel 

(   ) in center camera, according to the calibration result of intrinsic parameters, a 

vector   in 3D space is available. Then the candidate depth    in equation (4.3) 

could be computed, those possible depth points were projected into all the four 

subcameras, as explained in Section 4.2, four epipolar curves               is 

obtained now. 
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Fig. 5.1 The Process of depth searching in slide of the system 

 

 

Fig. 5.2 Epipolar Curves and matching window in image plane 

 

At each candidate depth   , its projected points in four sub-images are denoted by 

(  
    

 )          . Then four SSD values (5.11) between point (   )  and 



44 

 

(  
    

 ) are computed, then the summation of these four SSD values is the SSSD 

value (5.13). 

 

In computing the SSD functions by window, the ‘mirror effect’ (Fig. 1.2) should be 

taken care of. Fig.5.3 below describes the proper correspondence between center 

image and sub-image within a window:  

 

Fig. 5.3 The window correspondence under Mirror Effect 

 

By finding the minimum SSSD value among all the candidate depth   , the 

estimated depth is computed. Finally, by traverse all the pixels in the center image, 

repeating previous steps each time, the depth map is calculated. 

 

 

5.2 Fast Implementation in Disparity Space 

 

Though the general approach of multi-baseline (Section 5.1.3) is clear and direct to 

implement, it holds such defects: 
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 Suffer from both perspective distortion and lens distortion; 

 Low computation efficiency caused by redundant computation; 

 With the size of matching window increase, the computation time increase; 

 Difficult to realized by parallel computation; 

 

To make the camera system moving means we have to find an efficient algorithm to 

get the depth map around real time, to this end, a parallel algorithm in stereo 

matching, which is implemented in disparity space is presented. 

5.2.1 The Formation of Disparity Space 

 

In general, the disparity space (Fig. 5.4) is a 3 dimension space with two dimensions 

of position in images and one dimension in disparity. In each cell  (   ), the 

difference in intensity of pixel   at disparity   is stored. 

 

As shown in (5.10), under a certain transformation from center camera to     

subcamera, the disparity at pixel (   ) is a function of depth. So similar to (5.5) 

before aggregation within the window:   

   (   )    (   )    ((   )   ((   )       )) (5.19) 

 

Fig. 5.4 The Disparity Space 
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5.2.2 Multi-Baseline Stereo in Disparity Space 

 

Once the disparity space is generated, the OII technique in [5] and [6] could be 

simplified to get the SSSD value as described in section 5.1.2. 

 

As shown in Fig.5.5 (a), we need to aggregate the local aggregation region   ( ): 

the square window in red. Let   ( ) and   ( ) be the horizontal and vertical 

support region of pixel  , respectively. Note the fact that the aggregation of the 

whole support region is equivalent to aggregating the support region horizontally 

followed by aggregating vertically (Fig.5.5 (b), (c)). 

   ( )  ⋃   ( )    ( )  (5.20) 

 

In details, 

   (   )  ∑   (   )  ∑ (∑   (   )    ( ) )    ( )    ( )  ∑   
 (   )    ( )

 

 (5.21) 

where   
 (   ) represents the result after the horizontal integration step. 
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Fig. 5.5 Illustration of the OII technique 

 

Assume a local window has the size of (      )  (      ), then the overall 

OII technique achieves this aggregation goal in four steps: 

 

Step 1: Given the pixelwise raw matching cost   ((   )  ), we first build a 

horizontal integral image   ((   )  ), storing the cumulative row sum as 

   ((   )  )  ∑   ((   )  )        ((     )  )    ((   )  )(5.22) 
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Here an efficient way to get   ((   )  ) is by iteratively computation from 

  ((     )  ). In real practice,   ((   )  ) could be formulated by one loop 

horizontally. Note that when       ((    )  )   . 

 

Step 2: For each pixel   (     ) on the vertical region of  , we then compute 

the horizontal integral   
 (   ) in (5.21), using the horizontal integral image 

  ((   )  ) obtained in step 1: 

  
 (   )    ((      

    )  )    ((      
      )  )

   ((        )  )    ((          )  ) 

 (5.23) 

As shown in Fig. 5.5 (d),    
  and    

  are the left and right length of the horizontal 

region, since in our approach, a size fixed window is applied, so    
     

    .  

 

Step 3: Taking the computed horizontal matching cost   
 (   ) as the new input, 

similar to what has done in step 1, a vertical integral image   (   ), which stores 

the cumulative column sum, could be obtained as: 

   ((   )  )  ∑   
 ((   )  )        ((     )  )    

 ((   )  )(5.24) 

 

As explained in step 1, an iteratively computation is efficient and also when 

      ((    )  )    
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Step 4: Based on the vertical aggregated image   (   ), we finally derive the fully 

aggregated matching cost   (   ) for pixel   (     ) with similar subtraction 

as Step2: 

 

  (   )    ((         
 )  )    ((         

   )  )

   ((        )  )    ((          )  ) 

 (5.25) 

   
  and    

  are up and bottom length of the vertical region, since a square 

window is applied, so    
     

    . 

 

Up to now, the SSD value in disparity space is obtained. With four pairs of images, 

four aggregated disparity spaces   
            could be calculated. Because all 

these   
  are computed with the same base: the center image and have the same 

dimension (shown in Fig. 5.6), it is nature to sum them up to get the SSSD value: 

   
     ∑   

  
    (5.26) 
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Fig. 5.6 Getting SSSD values from SSD values in aggregated disparity space 

 

The final step is to find the minimum SSSD value in disparity dimension for each pixel 

to get the proper disparity; meanwhile, the depth is obtained. Applying this final step 

to all pixels in   
     would a depth map be formed. 

 

 

5.2.3 Merits of the Disparity Space Approach 

 

Following the above steps in section 5.2.1 and 5.2.2, the multi-baseline stereo is 

implemented in disparity space. In general, this disparity space approach holds such 

two merits: 

 

 Fast rapid speed in computation: 

 

Firstly, let us notice the fact that all the disparity values  ((   )       ) in (5.10), 

which are equivalent to the epipolar curve    (Fig. 5.2), need to be computed only 
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once. Although with the moving of camera, the image    it captured would change, 

while the relative transformation between subcameras would not. So a strategy of 

computing and storing all these epipolar curves could be applied to cut off the 

computation time. 

 

Secondly, as stated in [5], this algorithm is parallel in nature (as shown in Fig. 5.5 and 

Fig. 5.6), so it could be applied on GPU with CUDA implementations. What’s more, 

even with CPU computation, it also outperforms the general approach with its 

compact data structure. 

 

Last but not least, this algorithm holds an interesting property in computation that 

with the increase in window size, the computation is almost the same; however the 

general approach would show notable increase in computation time with increased 

size of window. 

 

 Free from distortion 

 

Fig. 5.7 shows how disparity space approach is naturally free from distortion. The 

object has the depth   at pixel (   ) in center camera  . Those two blue lines 

around (   ) refer to a fixed sized window.    and    are the depth points of 

the object related to the window around (   ) respectively. (     ) and (       ) 

are the projection of point   in camera    and    . Points    and    are also 

projected into these cameras individually in green lines. 
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Fig. 5.7 Free from distortion by Disparity Space approach 

 

By referring to the difference of blue window and green projected points, in general 

approach, these two point sets are usually different, so the general approach suffers 

from the problem of distortion. 

 

When it comes to the disparity approach, the actual windows aggregated in 

subcameras are those projected points from    and   . (in epipolar curves), rather 

than a fixed sized window around (     ) and (       ). Assume the depth of 

object does not change, then we are comparing the true projections of point      

and   , so the aggregated SSD value is free from distortion, in both perspective 

distortion and lens distortion. 

 

With the property of free from distortion, together with the property that the 

window size has no influence on the computation cost, a window with large size is 

suggested, which may conclude more local details and help eliminating the 

mismatching. 
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Chapter 6 

Experimental Results 
 

In this section, we show the experimental results of calibration, rectification and 

multi-baseline stereo, respectively. In the calibration part, both synthetic data and 

real system experiments are performed to test the validation of our proposed 

method. We show the improvement in proposed linear calibration by comparison 

with the baseline method directly derived from Davide’s Ocam-calib Toolbox [2], [3]. 

Both rectification results of perspective reprojection and epipolar curves are shown 

not only to provide foundation for stereo-matching but also to prove the accuracy of 

calibration in another aspect. Finally, the 3D reconstruction is done by multi-baseline 

stereo in disparity space. We show that the depth map with high quality could be 

obtained in seconds. With the depth map available, the well-known ICP algorithm 

[20] is applied to align those depth points to do the 3D reconstruction with a moving 

camera. 

 

 

6.1 Calibration Results 

 

6.1.1 Simulation Experiment 

 

To test the performance of our proposed calibration method, we set up the 

Simulation Experiment with 5 cameras with 6 shots with the extrinsic parameters 

shown in Fig. 6.1. As a natural extension, we set different intrinsic parameters to 

model and calibration results of real omnidirectional cameras according to Table 6.1. 

We set a chessboard with 6Χ8=48 corners with the size 24mm in each corner. 
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Fig. 6.1 A picture of our simulation experiment to show the setting of extrinsic 

parameters 

 

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 

 
 

 
 

 

 

Table 6.1 The setting of intrinsic parameters is according to the calibration results of 

these real omnidirectional camera 

 

The robustness of our calibration technique, in case of inaccuracy in detection the 

calibration points, could be studied by adding Gaussian noise (with deviation  ) to 
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the true projected points. Then our calibration method is performed on those 

corrupted point to show the validation and robustness of the algorithm. 

 

Fig. 6.2 plots the reprojection error vs. different noise level  . The noise level is 

varied from     pixels to       pixels with        pixels in increase. As 

usual, we define the reprojection error as the distance, in pixels, between 

back-projected 3D points and corrupted image point. As shown in the figure, the 

average error increases linearly with the noise level increase in both results of linear 

initialization and nonlinear refinement. Observe that the nonlinear refinement result 

is always better than that in the linear method. 

 

Usually       pixel is the maximum noise in practical calibration, which means 

our proposed would obtain around 0.4 pixels in accuracy. 

 

Fig. 6.2 The reprojection error vs. the noise level with both linear and nonlinear 

mehods 

 

In figure 6.3, we test the accuracy of estimation of translation from center camera to 

subcameras, i.e., the absolute error in vector   (equation 3.3), after nonlinear 

refinement. The absolute error is very small because even with the noise level 
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     , it is still less than 0.5 mm. What’s more, the errors in       are also very 

small which show the validation of our calibration method. 

 

Fig.6.3 Accuracy of the extrinsic parameters of translation from center camera to 

subcameras in average 

 

6.1.2 Real Experiment 

 

Following the steps mentioned in Chapter 3, to make the calibration process easy 

and convenient, a Matlab Toolbox was developed, which implements the calibration 

method for our Monocular Multi-view Camera system. 

 

Fig. 6.4 The Monocular Multi-view camera system Calibration Toolbox 

 

This toolbox (Fig. 6.4) is tested on our real camera system, and the camera has the 

resolution of          . We took 6 shots, so after separation, 30 images are 
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used in calibration. The total 48 corner points are detected by Harris corner detector 

having sub-pixel accuracy. 

 

A. The advantage of free from misleading  

 

In our previous work, we simply extended Jiang’s calibration method [1] from using 

singe shot to multiple shots by taking the average of the normal vector of mirrors 

and the distance between real camera and mirrors. Then we utilized the nonlinear 

refinement by Bundle Adjustment mentioned in previous section. This previous 

method shows that single shot usually does not provide reasonable precession. 

However, it suffers from the inconvenience of manually pick out the misleading. 

 

In detail, we used Davide’s Toolbox [3], [4] to calibrate the intrinsic parameters of 

the camera and the position of chessboard (extrinsic parameters), and utilize the 

position of chessboard to calculate the position of mirrors then get the relative space 

transformation between subcameras [1]. However, because Davide’s Toolbox only 

focuses the intrinsic parameters (the position of chessboard is a by-product) and the 

size of chessboard in our images are relative small (we have to put five chessboards 

in one shot), so there might be some misleading in estimate the position of each 

chessboard. Those misleading may corrupt the initial estimation of the relative space 

transformation between subcamera, and then lead to local-minimum in Bundle 

Adjustment, which is not desirable in calibration. 

 

In our proposed method, the iteration process in solving the rotation matrixes 

naturally prevents such misleading: the relative space transformation between 

subcameras are considered in all shots, meanwhile the position of chessboard in 

each shot is evaluated by all images taken by all subcameras. The key improvement 

is that we utilize those well estimated rotation matrixes by mean rotation at 

beginning instead of estimate those rotation matrixes in all shots separately then 

take the mean of them at last.  
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As shown in Fig. 6.5 (a), we separately calculate and draw the normal vector of 4 

mirrors (in different colors) in all images, the difference between each mirrors’ 

vectors shows the necessary of using multiple images during calibration. A wrong 

estimation of the right subcamera (see the blue camera in Fig. 6.5 c) is caused by one 

misleading vector: one blue thick dashed vector differs much from its group 

(highlighted by a red rectangle). 

 

However, our proposed method does not suffer from such problem since with the 

same input data since the normal vectors of mirrors are obtained correctly (Fig. 6.5 

b). The final result (Fig. 6.5 d) of the linear calibration outperforms the previous 

result (Fig. 6.5 c). After Bundle Adjustment, the proper initialized case would obtain 

0.62 pixels in average reprojection error while the bad initialized one gets 0.73 pixels 

in average reprojection error. Fig.6.5 (e) and (f) shows the changing of the relative 

position of subcameras in each iteration, which shows that our proposed method 

provides a better initialization, especially those rotation matrixes. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 6.5 Comparison of the proposed method vs. previous method 
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Fig. 6.6 plots the average reprojection errors in each iteration, from which we could 

observe that the calibration precession with previous initialization in 10th iteration is 

just the same as the one with proposed initialization in 1st iteration. 

 

Fig. 6.6 The reprojection error vs. the iteration time with different initialization: Blue 

and green lines represent the proposed method and previous method respectively 

 

B. The Overall evaluation of calibration 

 

Let us first evaluate the overall performance of our calibration technique in case of 

inaccuracy in detecting the calibration points. To this end, in Fig. 6.7 we show the 3D 

points of a chessboard back-projected onto the image. Those blue circles represent 

the projected points and red crosses are obtained by Harris corner detector. In fact, 

those projected points match the image better than those detected points 

sometimes. 
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Fig. 6.7 

Fig. 6.7 Reprojection Points in Real Image 

 

Then in Fig. 6.8 is shown the distribution of average reprojection error in each shot. 

From which majority of the reprojection errors are sub-pixel and those large 

reprojection errors happen in few images since they are in the same color. 

 

Fig. 6.8 

Fig. 6.8 The distribution of average reprojection error in each shot 
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6.2 Rectification Results 

 

Although only the epipolar curve is used in future study, here we show both results 

in perspective reprojection and epipolar curve. 

 

6.2.1Perspective Reprojection Result 

 

As described in Section 4.1, with the calibration results, origin image taken from the 

camera system Fig. 6.9 is rectified and the rectification result is shown in Fig. 6.10. 

With the perspective reprojection, the distortion from lens is rectified. And now the 

camera system is equivalent to parallel stereo with an anteroposterior offset, which 

means the direct epipolar constraint (equation 4.4) does not hold (shown as the 

disagreement in matching in the red horizontal or vertical lines).  So epipolar lines 

or fundamental matrix are needed in addition. 

 

 

Fig. 6.9 The origin image taken by the monocular multi-view camera system 
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Fig. 6.10 The rectification result of perspective reprojection 

 

 

6.2.2 Epipolar Curve Result 

 

Fig. 6.11 shows the result of epipolar curve constraint. These four epipolar curves 

correspond to the red cross in center image. For one thing, these epipolar curves 

provide foundation for stereo matching in future study, for another, they prove the 

effectiveness of calibration from side aspect. 
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Fig. 6.11 The Epipolar curves 

 

 

6.3 Multi-Baseline Stereo Results 

 

Finally, multi-baseline stereo is applied to get the depth map with single shot. We 

make comparison between the general approach and the disparity space approach, 

mainly to illustrate the effectiveness of the disparity space approach. 

 

6.3.1 General Approach 

 

Following the procedures described in Section 5.1.3, we develop the depth map from 

the input image (Fig. 6.12) with the resolution of 1600Χ1200. With different size of 

local window, the result of depth maps are shown in Fig. 6.13. 
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From the different results of depth map, it could be concluded that with a larger 

local window, the depth map would be smoother (with fewer outliers), however, 

some details (such as the hands behind the bear) might be lost. 

 

Another property of this general approach is the computation time, from Fig. 6.14, 

with the increase in size of local window, the computation time increases 

significantly. What’s more, even with a small local window, it still need about 3 

minutes to generate a depth map, which is unacceptable slow in application of the 

moving camera. 

 

Fig. 6.12 The input Image 
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(a) (b) 

  

(c) (d) 

Fig. 6.13 The output depth map with different window size of 7Χ7, 11Χ11, 15Χ15 and 

31Χ31, respectively 
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Fig. 6.14 Computation Time vs. Window Size 

 

 

6.3.2 Fast Implementation Results 

 

The disparity space approach in Section 5.2.2, however, is much faster and more 

efficient. 

 

With the same input image Fig. 6.12 and with different window size, the depth map 

(Fig. 6.15) now could be obtained by our un-optimized Matlab codes in around 5 

seconds (as shown in Fig. 6.14 ), which is at least 100 times faster than the general 

approach, and holding reasonable precision. 
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(a) (b) 

  

(c) (d) 

 

Fig. 6.15 Depth map obtained by Disparity Space approach with different window 

size of 7Χ7, 11Χ11, 15Χ15 and 31Χ31, respectively 

 

Note the fact that the square region with small depth around the depth map is 

caused by the limitation of field of view with four mirrors. While the general 

approach’s result does not show such region, illustrating that the general approach 

has mismatching in that entire region because of the limitation of distortion. 

 

When compared the result of general approach (Fig. 6.13) with the disparity space 

approach (Fig. 6.15). It could be concluded that with the same size of local window, 
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the disparity space approach always outperforms the general one, which 

demonstrates the advantage of ‘free from distortion’ of the general approach again. 

 

All the results shown above prove the effectiveness and accuracy of calibration, 

without which no such depth maps could be generated. 

 

6.4 3D Reconstruction Results 

 

Finally we show how 3D reconstruction is done with our camera system.  

 

The camera system is moving around the object and the depth map of each shot is 

computed. As shown in Fig. 6.16, eight images are obtained as input, and eight depth 

maps are computed according to each shot with the window size 17Χ17. 

 

Input image Output Depth Map 
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Fig. 6.16 The input image sequence and its depth map sequence 

 

With the depth map and calibrated intrinsic parameters of the camera, the 3D point 

cloud could be obtained, as shown left column in Fig. 6.17, here we filter out such 

depth information as background, mirror box. The ICP algorithm [20] is applied to 

align adjacent point clouds. In detail, we utilize the ICP function [21] in Matlab, and 

the results are shown in the right column in Fig. 6.17. 
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3D Point Cloud ICP Alignment between Adjacent shots 
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Fig. 6.17 ICP Alignment between two adjacent point clouds 

 

Finally, we align all these 8 shots in one figure, as shown in Fig. 6.18 

 

 

Fig. 6.18 Point Cloud Alignment with all input images 
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From the results shown in Fig. 6.18, side details of the bear is now available, and 

with more inputs, more details of the object would be obtained. 

 

So the final goal of 3D reconstruction with the moving camera system is now 

accomplished. 
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Chapter 7 

Conclusion and Future Work 
 

In this thesis, we have shown the whole procedure how to efficiently generate the 

depth map by the monocular multi-view camera system. The main contribution of 

this work lies in two aspects: Calibration of the camera system and Multi-Baseline 

Stereo in disparity space.  

 

To our knowledge, the proposed method in calibration is the first one that 

systematically calibrates the monocular camera system and its extension to general 

multiple omnidirectional camera system is also novel. In detail, the proposed linear 

calibration procedure is free from misleading compared to the baseline method, 

which would lead to a better final result after bundle adjustment. The merit of auto 

center detection from ‘OcamCalib’ by D. Scaramuzza is also inherited. The whole 

calibration method is implemented by a Matlab Toolbox, which makes the 

calibration procedure convenient and highly automatic. 

 

Furthermore, the implementation of Multi-Baseline Stereo in disparity space out 

performs the general approach in rapid computation speed. The disparity space 

approach is compact in data structure and flexible for application. With the OII 

technique, the aggregation in local window over the whole image could be down 

only with four one-dimension loops, the computation maintains even with the 

increased window size. Disparity space approach is also free from distortion in 

nature. 

 

As the results shown, with single shot, the depth map could be obtained in seconds 

with reasonable precession. Simply moving the camera would generate different 

depth map with the same object from different views, then the well-known ICP 

algorithm is applied to align those point clouds with each shot, the experimental 

results have shown the validation of this approach of 3D reconstruction. 
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However, there are still some works needs to be done in the future. 

 

Real Time Performance 

It is interesting to note that the multi-baseline stereo matching in disparity space is 

highly parallel. And as done in [5], one important future direction is to implement 

the algorithm on Graphics Processing Units (GPU) by the programming environment 

of Nvidia/CUDA. 

 

Structure from motion 

Because of the property (getting the depth map with single shot) of our camera 

system, we do not focus on the motion effect very much. A future work is to explore 

the possibility and advantage of applying structure from motion with this camera 

system. 

 

New hardware implementation 

The monocular multi-view camera system now suffers from the disadvantages of low 

resolution of the fisheye camera and limited view angle. So by replacing the fisheye 

camera to updated fisheye lens would solve the problem of low resolution. We also 

plane to remove the side mirrors to get a larger view angle in horizontal and to 

explore the new properties of such camera system. 
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